一类高阶分差分方程亚纯解的性质

Property of meromorphic solutions of certain high order difference equations

  • 摘要: 利用 亚纯函数的Nevanlinna值分布理论的差分模拟, 研究了非线性高阶差分方程 P_1(z)\prod_i=1^nf(z+c_i)=P_2(z)f(z)^n 亚纯解的零点,极点收敛指数和增长级,其中n是一个正整数,c_i(i=1,...,n)是非零复常数, P_1(z),P_2(z)是非零多项式.在给定条件下,得到了这类差分方程亚纯解的增长级的精确估计.

     

    Abstract: By utilizing the difference analogue of Nevanlinna's value distribution theory of meromorphic functions, the exponents of convergence of zeros, poles and the order of growth of meromorphic solutions of the nonlinear high order difference equation P_1(z)\prod_i=1^nf(z+c_i)=P_2(z)f(z)^n are studied, where n is a positive integer, ~c_i(i=1,...,n) are non-vanishing complex constants, and~P_1(z),~P_2(z) are given non-vanishing polynomials. The accurate estimate of the order of growth of meromorphic solutions to this difference equation is attained under the given conditions.

     

/

返回文章
返回