D_lambda-n-攀援集的一点注记

A Note on D_lambda-n-Scrambled Sets

  • 摘要: 从全空间的角度来研究 \mathcalD_\lambda-攀援集. 借助 Furstenberg 族为工具, 把分布攀援集的定义推广到 \mathcalD_\lambda-n-攀援集, 把关于全空间的分布攀援集的已有结论推广成\mathcalD_\lambda-n-攀援集的情形. 对任意实数 \lambda\in0,1 和任意整数 n\geqslant2, 证得不存在紧致的动力系统以全空间为 \mathcalD_\lambda-n-攀援集; 并且构造出了只含可数多个点的非紧致的可逆系统, 以全空间为 \mathcalD_\lambda-n-攀援集.

     

    Abstract: The \mathcalD_\lambda-scrambled sets are to be analysed in the aspect of whole space. By means of Furstenberg families, the definition of distributionally scrambled set is extended to define a \mathcalD_\lambda-n-scrambled set. Then the results on distributionally scrambled sets with the whole space obtained are generalized to the case of \mathcalD_\lambda-n-scrambled sets. For each real \lambda\in0,1 and each integer n\geqslant2, the main conclusions are as follows: (1) there is no compact dynamical system with the whole space being a \mathcalD_\lambda-n-scrambled set; (2) based on the example provided by WANG et al, an invertible noncompact dynamical system consisting of countable many points are constructed, whose \mathcalD_\lambda-n-scrambled set can be the whole space.

     

/

返回文章
返回