Processing math: 100%

非齐次线性微分方程的有限级解

李升, 陈宗煊

李升, 陈宗煊. 非齐次线性微分方程的有限级解[J]. 华南师范大学学报(自然科学版), 2008, 1(4): 27-31 .
引用本文: 李升, 陈宗煊. 非齐次线性微分方程的有限级解[J]. 华南师范大学学报(自然科学版), 2008, 1(4): 27-31 .
LI Sheng Zong-Xuan CHEN, . Finite order solutions of non-homogeneous linear differential equations with entire coefficients[J]. Journal of South China Normal University (Natural Science Edition), 2008, 1(4): 27-31 .
Citation: LI Sheng Zong-Xuan CHEN, . Finite order solutions of non-homogeneous linear differential equations with entire coefficients[J]. Journal of South China Normal University (Natural Science Edition), 2008, 1(4): 27-31 .

非齐次线性微分方程的有限级解

详细信息
    通讯作者:

    李升

  • 中图分类号: 

    O174.52

Finite order solutions of non-homogeneous linear differential equations with entire coefficients

  • 摘要: 研究了非齐次线性微分方程f(k)+Ak1(z)f(k1)++A1(z)f+A0(z)f=F(z) 有限级解的增长性,其中Aj(z)(j=0,,k1)F(z) 都是整函数,并且存在某个As(z)在某个扇形内以指数的形式起支配作用.
    Abstract: The growth of finite order solutions of non-homogeneous linear differential equation f(k)+Ak1(z)f(k1)++A1(z)f+A0(z)f=F(z) is considered, where Aj(z), j=0,,k1, F(z) are entire functions,and there exists some As(z) as exponentially dominating in a sector.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-30
  • 修回日期:  2007-09-20
  • 刊出日期:  2008-11-24

目录

    /

    返回文章
    返回