NDVI/NDWI/DEM决策树方法在东莞ALOS影像土地利用分类中的应用

Decision Tree Method Based on NDVI/NDWI/ DEM for land use classification of ALOS Image in Dongguan City

  • 摘要: 以东莞市2008年的ALOS影像为数据源,通过目视判读选取8类目标地物,并采用最大似然法进行土地利用分类,发现分类精度不高(80%).其主要原因是ALOS数据的有效波段较少,且研究区植被、水体密布,多类目标地物难以区分.针对该问题,结合东莞市的地形地貌特点,引入植被指数NDVI、水体指数NDWI和DEM数据,利用决策树方法进行土地利用分类,使分类精度有较大提高(90%),可有效地解决了因ALOS数据有效波段数较少而产生的分类精度低的问题.本研究表明,在我国南方亚热带地区基于植被指数、水体指数和DEM的改进型决策树分类是一种非常好的ALOS数据土地利用分类方法.

     

    Abstract: Using the ALOS image of Dongguan City in 2008 as data source, We first selected 8 objective land use types and used a maximum likelihood method for land use classification. We found that the classification accuracy is too low (80%). The main reason is that the ALOS data has few effective bands, and there are too many vegetation and waters in the study area, so it is difficult to distinguish many land use types. To solve the problem, this study combined the characteristics of topography, imported normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and digital elevation model (DEM) data, used decision tree methods for land use classification. The classification accuracy has improved greatly ( 90%). The study showed that in sub-tropical regions in southern China, the modified decision method based on vegetation, water index and DEM is a very useful land use classification method for ALOS data.

     

/

返回文章
返回