一个积分算子的单叶性

ON THE UNIVALENCE OF AN INTEGRAL OPERATOR

  • 摘要: 引入了一个定义在单位圆\mathcalU=\z\in\mathbbC:|z|1 \内规范化的解析函数类\mathscrA上的积分算子J_\gamma_1,\cdots,\gamma_n,\beta(z), 利用著名的Becker单叶性判别法, Schwarz引理和Caratheodory不等式, 得到了这个积分算子在单位圆内单叶的3个充分条件. 即当f_j(z)(j=1,2,\cdots,n)及参数\gamma_1,\cdots,\gamma_n,\beta满足一定条件时, 积分算子J_\gamma_1,\cdots,\gamma_n,\beta(z) 在单位圆内是单叶的.

     

    Abstract: A general integral operator J_\gamma_1,\cdots,\gamma_n,\beta(z) is introduced, which is defined on the class ~\mathscrA of normalized analytic functions in ~\mathcalU=\z\in\mathbbC:|z|1 \. Three sufficient conditions for the univalence of this integral operator in the unit disk \mathcalU are provided by applying the well-known Becker univalence criteria, Schwarz lemma and Caratheodory inequality. That is, the integral operator J_\gamma_1,\cdots,\gamma_n,\beta(z) is univalent in the unit disk \mathcalU when the functions f_j(z)(j=1,2,\cdots,n) and the parameters \gamma_1,\cdots,\gamma_n,\beta satisfy some conditions.

     

/

返回文章
返回