摘要:
引入了一个定义在单位圆U={z∈C:|z|1}内规范化的解析函数类A上的积分算子Jγ1,⋯,γn,β(z), 利用著名的Becker单叶性判别法, Schwarz引理和Caratheodory不等式, 得到了这个积分算子在单位圆内单叶的3个充分条件. 即当fj(z)(j=1,2,⋯,n)及参数γ1,⋯,γn,β满足一定条件时, 积分算子Jγ1,⋯,γn,β(z) 在单位圆内是单叶的.
关键词:
-
解析函数
/
-
积分算子
/
-
单叶性
/
-
星象性
Abstract:
A general integral operator Jγ1,⋯,γn,β(z) is introduced, which is defined on the class ~A of normalized analytic functions in ~U={z∈C:|z|1}. Three sufficient conditions for the univalence of this integral operator in the unit disk U are provided by applying the well-known Becker univalence criteria, Schwarz lemma and Caratheodory inequality. That is, the integral operator Jγ1,⋯,γn,β(z) is univalent in the unit disk U when the functions fj(z)(j=1,2,⋯,n) and the parameters γ1,⋯,γn,β satisfy some conditions.