留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多边形结构富锂锰基正极材料的可控制备及性能

李亚杰 侯贤华 马少蒙 黄媛 汝强 胡社军

李亚杰, 侯贤华, 马少蒙, 黄媛, 汝强, 胡社军. 多边形结构富锂锰基正极材料的可控制备及性能[J]. 华南师范大学学报(自然科学版), 2017, 49(6): 34-38.
引用本文: 李亚杰, 侯贤华, 马少蒙, 黄媛, 汝强, 胡社军. 多边形结构富锂锰基正极材料的可控制备及性能[J]. 华南师范大学学报(自然科学版), 2017, 49(6): 34-38.
Polygon structure rich lithium manganese anode material of controllable preparation and performance study[J]. Journal of South China normal University (Natural Science Edition), 2017, 49(6): 34-38.
Citation: Polygon structure rich lithium manganese anode material of controllable preparation and performance study[J]. Journal of South China normal University (Natural Science Edition), 2017, 49(6): 34-38.

多边形结构富锂锰基正极材料的可控制备及性能

基金项目: 

国家自然科学基金项目;广东省自然科学基金项目

详细信息
    通讯作者:

    李亚杰

  • 中图分类号: O78

Polygon structure rich lithium manganese anode material of controllable preparation and performance study

Funds: 

the National Natural Science Foundation of China

  • 摘要: 本文通过水热合成法成功制备了一种富锂Li1.166(Mn0.6Ni0.2Co0.2)0.834O2正极材料。并通过X射线衍射(XRD)、扫描电子显微镜(SEM)和高精度电池测试系统分别对电极材料的结构、形貌和电化学性能进行了相应的表征和测试分析.结果表明,样品Li1.166(Mn0.6Ni0.2Co0.2)0.834O2具有较好的多面体结构特点以及优异的电化学性能,该电极材料相对于商用LiCoO2材料(约135mAh g?1)具有更高的充放电比容量,其值分别为363.8 mAh g?1 和 222.2 mAh g?1,首次库仑效率为61.1%.循环100周之后可逆放电比容量仍然可以达到235.5 mAh g?1.该富锂Li1.166(Mn0.6Ni0.2Co0.2)0.834O2正极材料在高能量密度动力电池发展中具有良好的应用前景和广阔的市场空间.
  • [1] Armstrong AR and Bruce PG, Nature 1996, 381: 499–500.
    [2] Li HF, Pang J, Yin YP, Zhuang WD,Wang H, Zhai CX and Lu SG, RSC Adv 2013, 3:13907–13914.
    [3] Li M, Hou XH, Sha YJ, Wang J, Hu SJ, Liu X and Shao ZP, J Power Sources 2014, 248:721–728.
    [4] Li J, KRl?psch, Stan MC, Nowak S, Kunze M, Winter M, Passerini SJ Power Sources 2011, 196:4821–4825.
    [5] Shi SJ, Tu JP, Tang YY, Zhang YQ, Wang XL, Gu CD, J Power Sources 2013,240:140–148.
    [6] Wang JJ and Sun XL, Energy Environ Sci 2012, 5: 5163.
    [7] Mei RG, Song XR, Yang YF, An ZG and Zhang JJ, RSC Adv 2014, 4: 5746.
    [8] Han DW, Ryu WH, Kim WK, Eom JY and Kwon HS, J Phys Chem C 2013, 117:4913–4919.
    [9] Lai C, Ye WY, Liu HY and Wang WJ, Ionics 2009, 15:389–392.
    [10]Zou XL, Hou XH, Cheng ZB, Huang YL, Yue M, Hu SJ, Chin Sci Bull 2014, 59:2875-2881.
    [11] Li Q, Li GS, Fu CC, Luo D, Fan JM, Li LP, ACS Appl Mater Interfaces 2014,6:610330–10341.
    [12] Zhang J, Lu QW, Fang JH, Wang JL, Yang J, NuLiYN ACS Appl Mater Interfaces 2014,6:17965–17973.
    [13] Zhang XH, Luo D, Li GS, Zheng J, Yu C, Guan XF, Fu CC, Huang XD, Li LP, J Mater Chem A 2013,1:9721–9729.
    [14] Song BH, Lai MO, Liu ZW, Liu HW, Lu L, J Mater Chem A 2013,1:9954–9965.

    [1] Armstrong AR and Bruce PG, Nature 1996, 381: 499–500.
    [2] Li HF, Pang J, Yin YP, Zhuang WD,Wang H, Zhai CX and Lu SG, RSC Adv 2013, 3:13907–13914.
    [3] Li M, Hou XH, Sha YJ, Wang J, Hu SJ, Liu X and Shao ZP, J Power Sources 2014, 248:721–728.
    [4] Li J, KRl?psch, Stan MC, Nowak S, Kunze M, Winter M, Passerini SJ Power Sources 2011, 196:4821–4825.
    [5] Shi SJ, Tu JP, Tang YY, Zhang YQ, Wang XL, Gu CD, J Power Sources 2013,240:140–148.
    [6] Wang JJ and Sun XL, Energy Environ Sci 2012, 5: 5163.
    [7] Mei RG, Song XR, Yang YF, An ZG and Zhang JJ, RSC Adv 2014, 4: 5746.
    [8] Han DW, Ryu WH, Kim WK, Eom JY and Kwon HS, J Phys Chem C 2013, 117:4913–4919.
    [9] Lai C, Ye WY, Liu HY and Wang WJ, Ionics 2009, 15:389–392.
    [10]Zou XL, Hou XH, Cheng ZB, Huang YL, Yue M, Hu SJ, Chin Sci Bull 2014, 59:2875-2881.
    [11] Li Q, Li GS, Fu CC, Luo D, Fan JM, Li LP, ACS Appl Mater Interfaces 2014,6:610330–10341.
    [12] Zhang J, Lu QW, Fang JH, Wang JL, Yang J, NuLiYN ACS Appl Mater Interfaces 2014,6:17965–17973.
    [13] Zhang XH, Luo D, Li GS, Zheng J, Yu C, Guan XF, Fu CC, Huang XD, Li LP, J Mater Chem A 2013,1:9721–9729.
    [14] Song BH, Lai MO, Liu ZW, Liu HW, Lu L, J Mater Chem A 2013,1:9954–9965.
  • 加载中
计量
  • 文章访问数:  749
  • HTML全文浏览量:  92
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 修回日期:  2016-06-24
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回