留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于2个独立二项分布的风险比的信仰推断

汪永辉 金华 吴琴

汪永辉, 金华, 吴琴. 基于2个独立二项分布的风险比的信仰推断[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 114-118.
引用本文: 汪永辉, 金华, 吴琴. 基于2个独立二项分布的风险比的信仰推断[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 114-118.
Fiducial Hypothesis Testing for the Ratio of the Parameters of Two Independent Binomials[J]. Journal of South China normal University (Natural Science Edition), 2016, 48(1): 114-118.
Citation: Fiducial Hypothesis Testing for the Ratio of the Parameters of Two Independent Binomials[J]. Journal of South China normal University (Natural Science Edition), 2016, 48(1): 114-118.

基于2个独立二项分布的风险比的信仰推断

基金项目: 

国家自然基金青年项目

详细信息
    通讯作者:

    金华

Fiducial Hypothesis Testing for the Ratio of the Parameters of Two Independent Binomials

  • 摘要: 两个独立二项分布参数之间的风险比的非劣效性检验在医学统计研究中是一个非常有意义的问题. 常用的限制性极大估计方法在大多数情况下都不能控制第一类错误. 本文提出用基于信仰推断法来解决基于两个独立二项分布参数之间的风险比的非劣效性检验问题. 模拟结果显示: 在小样本的研究情况下,这种基于信仰推断法的MF检验方法能很好地控制第一类错误, 检验功效也不差.
  • [1] Almendra-Arao, F , Sotres-Ramos, D. .Comparison of some non-inferiority asymptotic tests for two independent proportions.[J].Agrociencia, 2009, 43:163 -172 [2]Chan, I. S. F..Exact tests of equivalence and efficacy with a non-zero lower bound for comparative studies.[J].Statist Med., 1998, 17:1403-1413 [3] Chan, I.S. F. .Proving non-inferiority or equivalence of two treatments with dichotomous endpoints using exact methods. [J].Stat. Methods Med. Res., 2003, 12:37-58 [4] Fisher, R.A. .Inverse probability. [J].Math. Proc. Cambridge Philos. Soc., 1930, 26:528-535 [5] Grundy, P.M. .Fiducial distributions and prior distributions: an example in which the former cannot be associated with the latter. [J].J.Roy. Statist. Soc. Ser. B., 1956,, 18:217-221 [6]. [7]. [8] Hannig, J..On generalized fiducial inference. 19 :491-544.[J].Statist. Sinica., 2009, 19:491-544 [9] Hannig, J.Generalized fiducial inference via discretization.[J].Statist. Sinica, 2013, 23:489-514 [10] Hannig, J,Lai, R. C. S., Lee, T.C.M, .Computational Issues of Generalized Fiducial Inference.[J].Computational Statistics and Data Analysis., 2014, 71:849-858 [11] Hua Jin, Xiaobo Feng, Mingming Chen, Chenling Zhang.Two new methods for non-inferiority testing of the ratio in matched-pair setting.[J].TEST, 2014, 23:691-707 [12]. [13]Lusher, J.M., Roberts, H. R., Davignon, G., Joist, J. H., Smith, H.,Shapiro, A., Laurian, Y., Kasper, C. K., Mannucci, .A randomized, double-blind comparison of two dosage levels of recombinant factor VIIa in the treatment of joint, muscle and mucocutaneous haemorrhages in persons with haemophilia A and B, with and without inhibitors.[J].Haemophilia., 1998, 4:790-798 [14]. [15]. [16] Miettinen, O, Nurminen, M. .Comparative analysis of two rates. [J].Statist. Med., 1985, 4:213-226 [17] Sotres-Ramos, D, Almendra-Arao, F.,Ramírez-Figueroa, C. .Exact critical values for Farrington-Manning noninferiority exact test. [J].Drug Information Journal, 2010, 44:159-164 [18] Taraldsen, G, Lindqvist, B. H. .Fiducial theory and optimal inference. [J].Ann. Statist., 2013, 41:323-341 [19] Zaslavsky, B,G. .Bayesian hypothesis testing in two-arm trials with dichotomous outcomes. [J].Biometrics., 2013, 69:157-163

    [1] Almendra-Arao, F , Sotres-Ramos, D. .Comparison of some non-inferiority asymptotic tests for two independent proportions.[J].Agrociencia, 2009, 43:163 -172 [2]Chan, I. S. F..Exact tests of equivalence and efficacy with a non-zero lower bound for comparative studies.[J].Statist Med., 1998, 17:1403-1413 [3] Chan, I.S. F. .Proving non-inferiority or equivalence of two treatments with dichotomous endpoints using exact methods. [J].Stat. Methods Med. Res., 2003, 12:37-58 [4] Fisher, R.A. .Inverse probability. [J].Math. Proc. Cambridge Philos. Soc., 1930, 26:528-535 [5] Grundy, P.M. .Fiducial distributions and prior distributions: an example in which the former cannot be associated with the latter. [J].J.Roy. Statist. Soc. Ser. B., 1956,, 18:217-221 [6]. [7]. [8] Hannig, J..On generalized fiducial inference. 19 :491-544.[J].Statist. Sinica., 2009, 19:491-544 [9] Hannig, J.Generalized fiducial inference via discretization.[J].Statist. Sinica, 2013, 23:489-514 [10] Hannig, J,Lai, R. C. S., Lee, T.C.M, .Computational Issues of Generalized Fiducial Inference.[J].Computational Statistics and Data Analysis., 2014, 71:849-858 [11] Hua Jin, Xiaobo Feng, Mingming Chen, Chenling Zhang.Two new methods for non-inferiority testing of the ratio in matched-pair setting.[J].TEST, 2014, 23:691-707 [12]. [13]Lusher, J.M., Roberts, H. R., Davignon, G., Joist, J. H., Smith, H.,Shapiro, A., Laurian, Y., Kasper, C. K., Mannucci, .A randomized, double-blind comparison of two dosage levels of recombinant factor VIIa in the treatment of joint, muscle and mucocutaneous haemorrhages in persons with haemophilia A and B, with and without inhibitors.[J].Haemophilia., 1998, 4:790-798 [14]. [15]. [16] Miettinen, O, Nurminen, M. .Comparative analysis of two rates. [J].Statist. Med., 1985, 4:213-226 [17] Sotres-Ramos, D, Almendra-Arao, F.,Ramírez-Figueroa, C. .Exact critical values for Farrington-Manning noninferiority exact test. [J].Drug Information Journal, 2010, 44:159-164 [18] Taraldsen, G, Lindqvist, B. H. .Fiducial theory and optimal inference. [J].Ann. Statist., 2013, 41:323-341 [19] Zaslavsky, B,G. .Bayesian hypothesis testing in two-arm trials with dichotomous outcomes. [J].Biometrics., 2013, 69:157-163
  • 加载中
计量
  • 文章访问数:  769
  • HTML全文浏览量:  144
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-17
  • 修回日期:  2015-11-24
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回