留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物激素调控籽粒大小的研究进展

董庆坤 刘慧丽 陶利珍

董庆坤, 刘慧丽, 陶利珍. 植物激素调控籽粒大小的研究进展[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 72-78.
引用本文: 董庆坤, 刘慧丽, 陶利珍. 植物激素调控籽粒大小的研究进展[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 72-78.
Progress on the plant hormone regulation Related to rice Seed Development[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 72-78.
Citation: Progress on the plant hormone regulation Related to rice Seed Development[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 72-78.

植物激素调控籽粒大小的研究进展

基金项目: 

国家自然科学基金项目

详细信息
    通讯作者:

    刘慧丽

Progress on the plant hormone regulation Related to rice Seed Development

  • 摘要: 植物的种子属于繁殖器官,是双受精之后形成的。种子的大小和品质是影响农作物产量的主要因素之一,研究控制种子籽粒大小发育的相关因素,对于提高农作物产量具有重要意义。高等植物的种子通常包含三个部分:胚胎、胚乳和种皮,这三个部分共同协调发育,最终决定种子的大小。近几年通过种子发育缺陷突变体或QTL等分子遗传学的研究方法,挖掘到许多控制种子发育的重要基因,这些基因广泛参与胚、胚乳、种皮等的发育过程,最终影响种子的大小和产量。通过对模式植物拟南芥和水稻等研究,发现调控种子发育的功能基因,它们许多是通过整合到植物激素的代谢或信号转导途径起作用,说明植物激素在调控籽粒发育中发挥重要作用,但有关这些基因作用的分子机理及其遗传调控网络有待深入阐明。本文主要以模式植物种子的发育研究为例,着重介绍植物激素调控种子籽粒大小调控的研究进展。
  • [1] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [2] Le BH, Wagmaister J A, Kawashima T, et al.Using genomics to study legume seed development[J].Plant Physiol, 2007, 144(2):562-574 [3] Ohad N, Yadegari R, Margossian L, et al.Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization[J].Plant Cell, 1999, 11(3):407-416 [4] Sun X, Shantharaj D, Kang X, et al.Transcriptional and hormonal signaling control of Arabidopsis seed development[J].Curr Opin Plant Biol, 2010, 13(5):611-620 [5] Sundaresan V.Control of seed size in plants[J].Proc Natl Acad Sci U S A, 2005, 102(50):17887-17888 [6] Zhou S R, Yin L L, Xue H W.Functional genomics based understanding of rice endosperm development[J].Curr Opin Plant Biol, 2013, 16(2):236-246 [7] Wang A, Garcia D, Zhang H, et al.The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J].Plant J, 2010, 63(4):670-679 [8] Luo M, Dennis E S, Berger F, et al.MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis[J].Proc Natl Acad Sci U S A, 2005, 102(48):17531-17536 [9] Fang W, Wang Z, Cui R, et al.Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana[J].Plant J, 2012, 70(6):929-939 [10] Ohto M A, Floyd S K, Fischer R L, et al.Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis[J].Sex Plant Reprod, 2009, 22(4):277-289 [11] Garcia D, Fitz G J, Berger F.Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J].Plant Cell, 2005, 17(1):52-60 [12] Jofuku K D, Omidyar P K, Gee Z, et al.Control of seed mass and seed yield by the floral homeotic gene APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3117-3122 [13] Ohto M A, Fischer R L, Goldberg R B, et al.Control of seed mass by APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3123-3128 [14] Song X J, Huang W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nat Genet, 2007, 39(5):623-630 [15] Xia T, Li N, Dumenil J, et al.The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis[J].Plant Cell, 2013, 25(9):3347-3359 [16] Li Y, Zheng L, Corke F, et al.Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana[J].Genes Dev, 2008, 22(10):1331-1336 [17] Huang R, Jiang L, Zheng J, et al.Genetic bases of rice grain shape: so many genes, so little known[J].Trends Plant Sci, 2013, 18(4):218-226 [18] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [19] Hwang I, Sheen J.Two-component circuitry in Arabidopsis cytokinin signal transduction[J].Nature, 2001, 413(6854):383-389 [20] Cheng C Y, Kieber J J.The role of cytokinin in ovule development in Arabidopsis[J]. . , : .[J].Plant Signal Behav, 2013, 8(3):e23393-e23393 [21] Riefler M, Novak O, Strnad M, et al.Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J].. , (1): 40-54.[J].Plant Cell, 2006, 18(1):40-54 [22] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J].Plant Cell, 2003, 15(11):2532-2550 [23] Hutchison C E, Li J, Argueso C, et al.The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling[J].Plant Cell, 2006, 18(11):3073-3087 [24] Argyros R D, Mathews D E, Chiang Y H, et al.Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development[J].Plant C, 2008, 20(8):2102-2116 [25] Li J, Nie X, Tan J L, et al.Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis[J].Proc Natl Acad Sci U S A, 2013, 110(38):15479-15484 [26] Yang J, Zhang J, Wang Z, et al.Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J].Plant Growth Regulation, 2003, 41(3):185-195 [27] Ashikari M, Sakakibara H, Lin S, et al.Cytokinin oxidase regulates rice grain production[J].Science, 2005, 309(5735):741-745 [28] Xing Y, Zhang Q.Genetic and molecular bases of rice yield[J].Annu Rev Plant Biol, 2010, 61( ):421-442 [29] Kurakawa T, Ueda N, Maekawa M, et al.Direct control of shoot meristem activity by a cytokinin-activating enzyme[J].Nature, 2007, 445(7128):652-655 [30] Li S, Zhao B, Yuan D, et al.Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J].Proc Natl Acad Sci U S A, 2013, 110(8):3167-3172 [31] Li M, Tang D, Wang K, et al.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J].Plant Biotechnol J, 2011, 9(9):1002-1013 [32] Li N, Li Y.Ubiquitin-mediated control of seed size in plants[J].Front Plant Sci, 2014, 5:332-332 [33] Nayar S, Sharma R, Tyagi A K, et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].J Exp Bot, 2013, 64(14):4239-4253 [34] Yin L L, Xue H W.The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development[J].Plant Cell, 2012, 24(3):1049-1065 [35] Hudson D, Guevara D R, Hand A J, et al.Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture[J].Plant Physiol, 2013, 162(1):132-144 [36] Zhang H, Tan G, Yang L, et al.Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J].Plant Physiol Biochem, 2009, 47(3):195-204 [37] Uchiumi T, Okamoto T.Rice fruit development is associated with an increased IAA content in pollinated ovaries[J]. . , :-.[J].Planta, 2010, 232(3): 579-592 [38] Schruff M C, Spielman M, Tiwari S, et al.The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J].Development, 2006, 133(2):251-261 [39] Jiang W B, Huang H Y, Hu Y W, et al.Brassinosteroid regulates seed size and shape in Arabidopsis[J].Plant Physiol, 2013, 162(4):1965-1977 [40] Fujioka S, Li J, Choi Y H, et al.The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis[J].Plant Cell, 1997, 9(11):1951-1962 [41] Yuan T, Fujioka S, Takatsuto S, et al.BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana[J].Plant J, 2007, 51(2):220-233 [42] Oki K, Inaba N, Kitagawa K, et al.Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling[J].Plant Cell Physiol, 2009, 50(1):161-172 [43] Morinaka Y, Sakamoto T, Inukai Y, et al.Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J].Plant Physiol, 2006, 141(3):924-931 [44] Hong Z, Ueguchi-Tanaka M, Fujioka S, et al.The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J].Plant Cell, 2005, 17(8):2243-2254 [45] Tanabe S, Ashikari M, Fujioka S, et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J].Plant Cell, 2005, 17(3):776-790 [46] Hong Z, Ueguchi-Tanaka M, Umemura K, et al.A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J].Plant Cell, 2003, 15(12):2900-2910 [47] Wu C Y, Trieu A, Radhakrishnan P, et al.Brassinosteroids regulate grain filling in rice[J].Plant Cell, 2008, 20(8):2130-2145 [48] Tanaka A, Nakagawa H, Tomita C, et al.BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J].Plant Physiol, 2009, 151(2):669-680 [49] Vriet C, Russinova E, Reuzeau C.Boosting crop yields with plant steroids[J].Plant Cell, 2012, 24(3):842-857 [50] Cheng Z J, Zhao X Y, Shao X X, et al.Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1[J].Plant Cell, 2014, 26(3):1053-1068 [51] Xue L J, Zhang J J, Xue H W.Genome-wide analysis of the complex transcriptional networks of rice developing seeds[J].PLoS One, 2012, 7(2):e31081-e31081 [52] Temple B R, Jones A M.The plant heterotrimeric G-protein complex[J].Annu Rev Plant Biol, 2007, 58:249-266

    [1] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [2] Le BH, Wagmaister J A, Kawashima T, et al.Using genomics to study legume seed development[J].Plant Physiol, 2007, 144(2):562-574 [3] Ohad N, Yadegari R, Margossian L, et al.Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization[J].Plant Cell, 1999, 11(3):407-416 [4] Sun X, Shantharaj D, Kang X, et al.Transcriptional and hormonal signaling control of Arabidopsis seed development[J].Curr Opin Plant Biol, 2010, 13(5):611-620 [5] Sundaresan V.Control of seed size in plants[J].Proc Natl Acad Sci U S A, 2005, 102(50):17887-17888 [6] Zhou S R, Yin L L, Xue H W.Functional genomics based understanding of rice endosperm development[J].Curr Opin Plant Biol, 2013, 16(2):236-246 [7] Wang A, Garcia D, Zhang H, et al.The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J].Plant J, 2010, 63(4):670-679 [8] Luo M, Dennis E S, Berger F, et al.MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis[J].Proc Natl Acad Sci U S A, 2005, 102(48):17531-17536 [9] Fang W, Wang Z, Cui R, et al.Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana[J].Plant J, 2012, 70(6):929-939 [10] Ohto M A, Floyd S K, Fischer R L, et al.Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis[J].Sex Plant Reprod, 2009, 22(4):277-289 [11] Garcia D, Fitz G J, Berger F.Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J].Plant Cell, 2005, 17(1):52-60 [12] Jofuku K D, Omidyar P K, Gee Z, et al.Control of seed mass and seed yield by the floral homeotic gene APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3117-3122 [13] Ohto M A, Fischer R L, Goldberg R B, et al.Control of seed mass by APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3123-3128 [14] Song X J, Huang W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nat Genet, 2007, 39(5):623-630 [15] Xia T, Li N, Dumenil J, et al.The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis[J].Plant Cell, 2013, 25(9):3347-3359 [16] Li Y, Zheng L, Corke F, et al.Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana[J].Genes Dev, 2008, 22(10):1331-1336 [17] Huang R, Jiang L, Zheng J, et al.Genetic bases of rice grain shape: so many genes, so little known[J].Trends Plant Sci, 2013, 18(4):218-226 [18] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [19] Hwang I, Sheen J.Two-component circuitry in Arabidopsis cytokinin signal transduction[J].Nature, 2001, 413(6854):383-389 [20] Cheng C Y, Kieber J J.The role of cytokinin in ovule development in Arabidopsis[J]. . , : .[J].Plant Signal Behav, 2013, 8(3):e23393-e23393 [21] Riefler M, Novak O, Strnad M, et al.Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J].. , (1): 40-54.[J].Plant Cell, 2006, 18(1):40-54 [22] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J].Plant Cell, 2003, 15(11):2532-2550 [23] Hutchison C E, Li J, Argueso C, et al.The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling[J].Plant Cell, 2006, 18(11):3073-3087 [24] Argyros R D, Mathews D E, Chiang Y H, et al.Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development[J].Plant C, 2008, 20(8):2102-2116 [25] Li J, Nie X, Tan J L, et al.Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis[J].Proc Natl Acad Sci U S A, 2013, 110(38):15479-15484 [26] Yang J, Zhang J, Wang Z, et al.Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J].Plant Growth Regulation, 2003, 41(3):185-195 [27] Ashikari M, Sakakibara H, Lin S, et al.Cytokinin oxidase regulates rice grain production[J].Science, 2005, 309(5735):741-745 [28] Xing Y, Zhang Q.Genetic and molecular bases of rice yield[J].Annu Rev Plant Biol, 2010, 61( ):421-442 [29] Kurakawa T, Ueda N, Maekawa M, et al.Direct control of shoot meristem activity by a cytokinin-activating enzyme[J].Nature, 2007, 445(7128):652-655 [30] Li S, Zhao B, Yuan D, et al.Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J].Proc Natl Acad Sci U S A, 2013, 110(8):3167-3172 [31] Li M, Tang D, Wang K, et al.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J].Plant Biotechnol J, 2011, 9(9):1002-1013 [32] Li N, Li Y.Ubiquitin-mediated control of seed size in plants[J].Front Plant Sci, 2014, 5:332-332 [33] Nayar S, Sharma R, Tyagi A K, et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].J Exp Bot, 2013, 64(14):4239-4253 [34] Yin L L, Xue H W.The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development[J].Plant Cell, 2012, 24(3):1049-1065 [35] Hudson D, Guevara D R, Hand A J, et al.Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture[J].Plant Physiol, 2013, 162(1):132-144 [36] Zhang H, Tan G, Yang L, et al.Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J].Plant Physiol Biochem, 2009, 47(3):195-204 [37] Uchiumi T, Okamoto T.Rice fruit development is associated with an increased IAA content in pollinated ovaries[J]. . , :-.[J].Planta, 2010, 232(3): 579-592 [38] Schruff M C, Spielman M, Tiwari S, et al.The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J].Development, 2006, 133(2):251-261 [39] Jiang W B, Huang H Y, Hu Y W, et al.Brassinosteroid regulates seed size and shape in Arabidopsis[J].Plant Physiol, 2013, 162(4):1965-1977 [40] Fujioka S, Li J, Choi Y H, et al.The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis[J].Plant Cell, 1997, 9(11):1951-1962 [41] Yuan T, Fujioka S, Takatsuto S, et al.BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana[J].Plant J, 2007, 51(2):220-233 [42] Oki K, Inaba N, Kitagawa K, et al.Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling[J].Plant Cell Physiol, 2009, 50(1):161-172 [43] Morinaka Y, Sakamoto T, Inukai Y, et al.Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J].Plant Physiol, 2006, 141(3):924-931 [44] Hong Z, Ueguchi-Tanaka M, Fujioka S, et al.The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J].Plant Cell, 2005, 17(8):2243-2254 [45] Tanabe S, Ashikari M, Fujioka S, et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J].Plant Cell, 2005, 17(3):776-790 [46] Hong Z, Ueguchi-Tanaka M, Umemura K, et al.A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J].Plant Cell, 2003, 15(12):2900-2910 [47] Wu C Y, Trieu A, Radhakrishnan P, et al.Brassinosteroids regulate grain filling in rice[J].Plant Cell, 2008, 20(8):2130-2145 [48] Tanaka A, Nakagawa H, Tomita C, et al.BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J].Plant Physiol, 2009, 151(2):669-680 [49] Vriet C, Russinova E, Reuzeau C.Boosting crop yields with plant steroids[J].Plant Cell, 2012, 24(3):842-857 [50] Cheng Z J, Zhao X Y, Shao X X, et al.Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1[J].Plant Cell, 2014, 26(3):1053-1068 [51] Xue L J, Zhang J J, Xue H W.Genome-wide analysis of the complex transcriptional networks of rice developing seeds[J].PLoS One, 2012, 7(2):e31081-e31081 [52] Temple B R, Jones A M.The plant heterotrimeric G-protein complex[J].Annu Rev Plant Biol, 2007, 58:249-266
  • 加载中
计量
  • 文章访问数:  649
  • HTML全文浏览量:  72
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-26
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-25

目录

    /

    返回文章
    返回