留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能绝缘材料加工工艺对电润湿显示器性能的影响

郭媛媛 蒋洪伟 周国富 Robert A. Hayes

郭媛媛, 蒋洪伟, 周国富, Robert A. Hayes. 功能绝缘材料加工工艺对电润湿显示器性能的影响[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 42-47.
引用本文: 郭媛媛, 蒋洪伟, 周国富, Robert A. Hayes. 功能绝缘材料加工工艺对电润湿显示器性能的影响[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 42-47.
Process influence on electro-wetting display insulator material property[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 42-47.
Citation: Process influence on electro-wetting display insulator material property[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 42-47.

功能绝缘材料加工工艺对电润湿显示器性能的影响

基金项目: 

国家自然科学基金项目;广东省自然科学基金项目;教育部引进创新科研团队项目;广东省创新科研团队项目

详细信息
    通讯作者:

    Robert A. Hayes

Process influence on electro-wetting display insulator material property

Funds: 

The National Natural Science Foundation of China

  • 摘要: 电润湿显示器是基于氟树脂层(如AF1600)作为疏水绝缘层,通过外加电压来改变液体在其表面润湿性来达到显示效果的装置,为了使光刻胶层和氟树脂层有很好的粘结性能,对氟树脂表面进行离子刻蚀来增大其润湿性. 光刻后需恢复氟树脂疏水性以恢复其电润湿特性. 常用方法是通过高温回流(High Temperature Reflow Method)的方法使刻蚀后的氟树脂表面熔融流平,但高温会造成光刻胶材料黄变,像素格变形等缺陷. 本文通过蒸汽溶解法(Vapor Redissolve Method)代替高温回流法来恢复氟树脂层的疏水性能,使用氟碳溶剂(HFE7100)蒸汽溶解氟树脂层粗糙表面形成溶胶状态,加热蒸发溶剂后使表面恢复疏水性质. 本文针对蒸汽溶解法溶解时间、干燥温度和干燥时间等条件进行探究,并对高温回流法和蒸汽溶解法对电润湿显示器产生的物理和光电影响进行了对比研究.
  • [1]Shibuichi S, Yamamoto T, Onda T, et al.Super water and oil repellent surfaces resulting from fractal structure[J].Journal of Colloid and Interface Science, 1998, 208(1):287-294 [2] David Q.Wetting and roughness[J].Annual Review of Materials Research, 2008, 38(1): 71-99 [3]Kang K H.How electrostatic fields change contact angle in electrowetting[J].Langmuir, 2002, 18(26):10318-10322 [4]Verheijen H J J, Prins M W J.Reversible electrowetting and trapping of charge: model and experiments[J].Langmuir, 1999, 15(20):6616-6620 [5]Hendriks B H W,Kuiper S,Van As M A J,et al.Electrowetting based variable focus lens for miniature systems[J].Optical Review, 2005, 12(3):255-259 [6] Paik P, Vamsee K P, Michael G P, et al.Electrowetting-based droplet mixers for microfluidic systems[J].Lab on a Chip, 2003, 3(1):28-33 [7] Hayes R A, Feenstra B J.Video-speed electronic paper based on electrowetting[J].Nature, 2003, 425(6956):383-385 [8] Lippmann G.Relation entre les phénomènes électriques[J].Annales de Chimie et Physique, 1875, 5(1):494-548 [9]Lee G, Moon H, Fowler J, et al.Electrowetting and electrowetting on dielectric for microscale liquid handling[J].Sensors and Actuators. A: Physical, 2002, 95(2):259-268 [10]Chang H C, Chang J K.Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Virtual Journal of Nanoscale Science and Technology, 2006, 13(8):066001-066001 [11]Datta A, Eom I A, Dhar A, et al.Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon[J].Sensors Journal, IEEE, 2003, 3(6):788-795 [12]Anamelechi C C, Truskey G A, Reichert W M.Mylar (TM) and Teflon-AF (TM) as cell culture substrates for studying endothelial cell adhesion[J].Biomaterials, 2005, 26(34):6887-6896

    [1]Shibuichi S, Yamamoto T, Onda T, et al.Super water and oil repellent surfaces resulting from fractal structure[J].Journal of Colloid and Interface Science, 1998, 208(1):287-294 [2] David Q.Wetting and roughness[J].Annual Review of Materials Research, 2008, 38(1): 71-99 [3]Kang K H.How electrostatic fields change contact angle in electrowetting[J].Langmuir, 2002, 18(26):10318-10322 [4]Verheijen H J J, Prins M W J.Reversible electrowetting and trapping of charge: model and experiments[J].Langmuir, 1999, 15(20):6616-6620 [5]Hendriks B H W,Kuiper S,Van As M A J,et al.Electrowetting based variable focus lens for miniature systems[J].Optical Review, 2005, 12(3):255-259 [6] Paik P, Vamsee K P, Michael G P, et al.Electrowetting-based droplet mixers for microfluidic systems[J].Lab on a Chip, 2003, 3(1):28-33 [7] Hayes R A, Feenstra B J.Video-speed electronic paper based on electrowetting[J].Nature, 2003, 425(6956):383-385 [8] Lippmann G.Relation entre les phénomènes électriques[J].Annales de Chimie et Physique, 1875, 5(1):494-548 [9]Lee G, Moon H, Fowler J, et al.Electrowetting and electrowetting on dielectric for microscale liquid handling[J].Sensors and Actuators. A: Physical, 2002, 95(2):259-268 [10]Chang H C, Chang J K.Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Virtual Journal of Nanoscale Science and Technology, 2006, 13(8):066001-066001 [11]Datta A, Eom I A, Dhar A, et al.Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon[J].Sensors Journal, IEEE, 2003, 3(6):788-795 [12]Anamelechi C C, Truskey G A, Reichert W M.Mylar (TM) and Teflon-AF (TM) as cell culture substrates for studying endothelial cell adhesion[J].Biomaterials, 2005, 26(34):6887-6896
  • 加载中
计量
  • 文章访问数:  636
  • HTML全文浏览量:  71
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-17
  • 修回日期:  2015-06-30
  • 刊出日期:  2015-11-25

目录

    /

    返回文章
    返回