留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微热气泡驱动下的微流控的理论研究

史可樟 杨剑鑫 李锡均 郑嘉鹏 史萌 蔡祥 朱德斌 邢晓波

史可樟, 杨剑鑫, 李锡均, 郑嘉鹏, 史萌, 蔡祥, 朱德斌, 邢晓波. 微热气泡驱动下的微流控的理论研究[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 28-31.
引用本文: 史可樟, 杨剑鑫, 李锡均, 郑嘉鹏, 史萌, 蔡祥, 朱德斌, 邢晓波. 微热气泡驱动下的微流控的理论研究[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 28-31.
The theoretical study of microfluidics control driven by thermal microbubbles[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 28-31.
Citation: The theoretical study of microfluidics control driven by thermal microbubbles[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 28-31.

微热气泡驱动下的微流控的理论研究

基金项目: 

国家自然科学基金项目

详细信息
    通讯作者:

    邢晓波

  • 中图分类号: 0439/应用光学

The theoretical study of microfluidics control driven by thermal microbubbles

  • 摘要: 微流控技术是指在微纳米尺度下利用流体的动力学特征,对微粒进行俘获、富集、自组装等微操作的技术.其已发展为一个生物、化学、医学、材料、光学、流体、机械等多学科交叉的崭新研究领域.其中,微热气泡驱动的流体具有优异的可操控性,受到越来越多研究者的关注.本文基于微热气泡的产生机制,结合热力学和流体力学的理论知识,采用COMSOL Multiphysics 4.4数值计算软件,对微热气泡驱动下的流体的流速场进行模拟和定量分析.结果证明,微热气泡表面具有马格兰尼效应,其驱动下的流体以漩涡的方式高效地俘获和富集微粒,与实验现象相符.因此,本文从理论上探究微热气泡驱动下的流速场性质,对提高微流体的可操控性,促进微流控技术的发展都具有重要的意义.
  • [1]Hogan J.Lab on a chip: A little goes a long way[J].Nature, 2006, 442(7101):351-352
    [2]Whitesides G M.The origins and the future of microfluidics[J].Nature, 2006, 442(7101):368-373
    [3] Xing X B, Zheng J P, Li F J, et al.Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by agraphene oxide-microheater[J]. Scientific Reports, 2014, 4: 6086.
    [4]Fujii S, Kanaizuka K, Toyabe S, et al.Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface[J].Langmuir, 2011, 27(14):8605-8610
    [5]Zheng Y J, Liu H, Wang Y, et al.Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble[J].Lab on a Chip, 2011, 11(22):3816-3820
    [6]Li Y, Xu L L, Li B J.Gold nanorod-induced localized surface plasmon for microparticle aggregation[J].Applied Physics Lettes, 2012, 101(5):053118-
    [7]Namura K, Nakajima K, Kimura K.Photothermally controlled Marangoni flow around a micro bubble[J].Applied Physics Letters, 2015, 106(4):043101-
    [8]Yusupov V I, Tsypina S I, Bagratashvili V N.Trapping of nanoparticles in a liquid by laser-induced microbubbles[J].Laser Physics Letters, 2014, 11(11):116001-
    [9]Donner J S, Baffou G, McCloskey D, et al.Plasmon-assisted optofluidics[J].Acs Nano, 2011, 5(7):5457-5462
    [10]Vela E, Hafez M, Regnier S.Laser-induced thermocapillary convection for mesoscale manipulation[J].International Journal of Optomechatronics, 2009, 3(4):289-302
    [11]Basu A S, Gianchandani Y B.Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature[J].Applied Physics Letters, 2007, 90(3):034102-

    [1]Hogan J.Lab on a chip: A little goes a long way[J].Nature, 2006, 442(7101):351-352
    [2]Whitesides G M.The origins and the future of microfluidics[J].Nature, 2006, 442(7101):368-373
    [3] Xing X B, Zheng J P, Li F J, et al.Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by agraphene oxide-microheater[J]. Scientific Reports, 2014, 4: 6086.
    [4]Fujii S, Kanaizuka K, Toyabe S, et al.Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface[J].Langmuir, 2011, 27(14):8605-8610
    [5]Zheng Y J, Liu H, Wang Y, et al.Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble[J].Lab on a Chip, 2011, 11(22):3816-3820
    [6]Li Y, Xu L L, Li B J.Gold nanorod-induced localized surface plasmon for microparticle aggregation[J].Applied Physics Lettes, 2012, 101(5):053118-
    [7]Namura K, Nakajima K, Kimura K.Photothermally controlled Marangoni flow around a micro bubble[J].Applied Physics Letters, 2015, 106(4):043101-
    [8]Yusupov V I, Tsypina S I, Bagratashvili V N.Trapping of nanoparticles in a liquid by laser-induced microbubbles[J].Laser Physics Letters, 2014, 11(11):116001-
    [9]Donner J S, Baffou G, McCloskey D, et al.Plasmon-assisted optofluidics[J].Acs Nano, 2011, 5(7):5457-5462
    [10]Vela E, Hafez M, Regnier S.Laser-induced thermocapillary convection for mesoscale manipulation[J].International Journal of Optomechatronics, 2009, 3(4):289-302
    [11]Basu A S, Gianchandani Y B.Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature[J].Applied Physics Letters, 2007, 90(3):034102-
  • 加载中
计量
  • 文章访问数:  679
  • HTML全文浏览量:  87
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-10
  • 修回日期:  2015-06-26
  • 刊出日期:  2015-11-25

目录

    /

    返回文章
    返回