留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有极大P-集的实对称阵及其伴随图

杜志斌

杜志斌. 具有极大P-集的实对称阵及其伴随图[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 119-122.
引用本文: 杜志斌. 具有极大P-集的实对称阵及其伴随图[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 119-122.
The real symmetric matrices with a P-set of maximum size and their associated graphs[J]. Journal of South China normal University (Natural Science Edition), 2016, 48(1): 119-122.
Citation: The real symmetric matrices with a P-set of maximum size and their associated graphs[J]. Journal of South China normal University (Natural Science Edition), 2016, 48(1): 119-122.

具有极大P-集的实对称阵及其伴随图

基金项目: 

实对称阵的伴随图与特征值重数及相关问题的研究;基于图的邻接谱与Laplacian谱的图不变量的研究

详细信息
    通讯作者:

    杜志斌

  • 中图分类号: O157.5

The real symmetric matrices with a P-set of maximum size and their associated graphs

  • 摘要: 实对称阵的P-集是一个基于矩阵的特征值重数以及Cauchy插值定理所提出的定义。设 为一个 阶实对称阵,记 为 的特征值0的(代数)重数,并记 为将 的第 行与第 列去掉后所得的主子阵,其中 为 的一个非空子集。特别地,当 时,称S为 的一个P-集。记 为实对称阵 的P-集所含元素个数的最大值。Kim与Shader证明了每个 阶实对称阵至多包含 个元素,即 。杜志斌与Fonseca首先将研究重点放在树矩阵(即伴随图为树的矩阵),研究了满足 的 阶树矩阵 ,并完全刻画出 的伴随图(树)。本文将研究范围从树矩阵延伸到所有实对称阵,研究了满足 的 阶实对称阵 ,给出其相关性质,并对 为偶数时 的伴随图进行特征刻画,而对 为奇数时 的伴随图给出了猜想,推广了关于树矩阵的结果。
  • [1] Du Z., da Fonseca C.M., The acyclic matrices with a P-set of maximum size[J]. Linear Algebra Appl., 2014, 468:27-37.
    [2] Fernande R., da Cruz H.F., Sets of Parter vertices which are Parter sets[J]. Linear Algebra Appl., 2014, 448:37-54.
    [3] Horn R.A., Johnson C.R., Matrix Analysis, Second Edition[M]. New York:Cambridge University Press, 2013.
    [4] Johnson C.R., Leal Duarte A., Saiago C.M., The Parter-Wiener theorem: refinement and generalization[J]. SIAM J. Matrix Anal. Appl., 2003, 25(2):352-361.
    [5] Kim I.-J., Shader B.L., Non-singular acyclic matrices[J]. Linear Multilinear Algebra, 2009, 57(4): 399-407.
    [6] Nelson C.G., Shader B.L., All pairs suffice for a P-set [J]. Linear Algebra Appl., 2015, 475:114-118.

    [1] Du Z., da Fonseca C.M., The acyclic matrices with a P-set of maximum size[J]. Linear Algebra Appl., 2014, 468:27-37.
    [2] Fernande R., da Cruz H.F., Sets of Parter vertices which are Parter sets[J]. Linear Algebra Appl., 2014, 448:37-54.
    [3] Horn R.A., Johnson C.R., Matrix Analysis, Second Edition[M]. New York:Cambridge University Press, 2013.
    [4] Johnson C.R., Leal Duarte A., Saiago C.M., The Parter-Wiener theorem: refinement and generalization[J]. SIAM J. Matrix Anal. Appl., 2003, 25(2):352-361.
    [5] Kim I.-J., Shader B.L., Non-singular acyclic matrices[J]. Linear Multilinear Algebra, 2009, 57(4): 399-407.
    [6] Nelson C.G., Shader B.L., All pairs suffice for a P-set [J]. Linear Algebra Appl., 2015, 475:114-118.
  • 加载中
计量
  • 文章访问数:  894
  • HTML全文浏览量:  145
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-21
  • 修回日期:  2015-06-26
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回