留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超表达GLDH拟南芥植株对高光胁迫的响应

周娟 李媚 彭长连

周娟, 李媚, 彭长连. 超表达GLDH拟南芥植株对高光胁迫的响应[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 84-88.
引用本文: 周娟, 李媚, 彭长连. 超表达GLDH拟南芥植株对高光胁迫的响应[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 84-88.
Ascorbic acid Affects the Response to High-light Stress in Arabidopsis Thaliana[J]. Journal of South China normal University (Natural Science Edition), 2016, 48(1): 84-88.
Citation: Ascorbic acid Affects the Response to High-light Stress in Arabidopsis Thaliana[J]. Journal of South China normal University (Natural Science Edition), 2016, 48(1): 84-88.

超表达GLDH拟南芥植株对高光胁迫的响应

基金项目: 

项目编号:2013B090500123,项目名称: 新型微纳米光纤传感技术研究及其在大气环境检测与评估中的应用

详细信息
    通讯作者:

    彭长连

Ascorbic acid Affects the Response to High-light Stress in Arabidopsis Thaliana

Funds: 

广东省科技计划项目2013B090500123

  • 摘要: 以拟南芥(Arabidopsis thaliana)为实验材料,研究了在短时间高光胁迫下两种基因型植株(GLDH基因超表达植株gldh236OE和哥伦比亚野生型Col)的表型、叶绿素含量、叶绿素荧光等生理数据的变化。结果表明,超表达植株的抗坏血酸表达量显著高于野生型,高光对超表达植株叶片的伤害也小于对照野生型;野生型植株叶片叶绿素含量在高光处理前后并无明显变化,而超表达植株的叶绿素含量显著降低;PSII有效光化学效率Yield和光合电子传递速率ETR呈明显降低趋势,对照野生型的降低程度更明显,说明高光胁迫使PSII结构与功能受到一定程度的损伤与破坏,而抗坏血酸含量的增加能在一定程度上缓解高光胁迫所带来的伤害。研究结果表明,通过基因表达调控提高抗坏血酸水平能有效缓解强光胁迫,使植物更好的适应高光,维持植物正常生理生态性状。
  • [1] Zolla L, Rinalducci S. Involvement of active oxygen species in degradation of light- harvesting proteins un- der light stresses[J]. Bio-chemistry, 2002, 41( 48):14391- 14402.
    [2] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48:93–96.
    [3] 刘国艳. 自由基的生物学效应及自由基清除系统的功能特性[J]. 上海交通大学学报, 2001(20):93-96.
    Liu G Y. The biological effects of free radicals and the characteristic of radical scavenging system [J]. Shanghai Jiao Tong University Journal, 2010(20):93-96.
    [4] Vass I. Molecular mechanisms of photo-damage in the photosystem II complex[J]. Biochim Biophysica Acta, 2012:209–217.
    [5] Asada K. The water-water cycle as alternative photon and electron sinks[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2000,355(1402):1419-1431.
    [6] Foyer C H, Lelandais M and Kunert K J. Photooxidative stress in plants [J]. Physiologia Plantarum, 1994,92 (4):696-717.
    [7] NOCTOR G, FOYER C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Plant Physiol, 1998,49: 249- 279.
    [8] Allen J F. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise[J]. Cell, 2002,110(3):273-276.
    [9] Gallie D R. The role of L-ascorbic acid recycling in responding to environmental stess and in promoting plant growth [J]. Phyton-International Journal of Experimental Botany, 2013,64(2):433-443.
    [10] Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress [J]. Phyton-International Journal of Experimental Botany, 2003,54(391):2285-2292.
    [11] Gillespie K. M. and Ainsworth E. A. Measurement of reduced, oxidized and total ascorbate content in plants [J]. Nature Protocols, 2007,2 (4): 871-874.
    [12] Romero-puertas M C, Rodriguez-Serrano M, Corpas F J,et al, Cadmium-induced subcellular accumulation of O2.-and H2O2 in pea leaves [J]. Cell and Environment, 2004,27:1122-1134.
    [13] 张卫星,朱德峰,林贤青等. 穗生长发育阶段水分逆境对超级稻叶片丙二醛含量的影响.华北农学报[J], 2008,23(3):72-76.
    Zhang W X, Zhu D F, Lin X Q. The effect of water adversity on malondialdehyde content in super rice leaves during panicle growth and development stage[J]. Acta Agriculturae Boreali-Sinica, 2008,23(3): 72-76.
    [14] 林植芳,李双顺,林桂珠, 等. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J]. 植物学报, 1984, 26(6):605-615.
    Lin Z F, Li S S, Lin G Z, et al. Superoxide dismutase activity and Lipid peroxidation in relation to senescence of rice leaves[J]. Plant Journal, 1984, 26(6):605-615.
    [15] 刘拥海,彭新湘,李明启. 水稻叶片中过氧化氢与核酮糖-1,5-二磷酸羧化酶/加氧酶降解的关系[J]. 植物生理学报, 2000, 26 (6): 481-486.
    Liu Y H, Peng X X, Li M Q. Degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in Rice leaves under oxidative stress induced by methyl viologen[J]. Plant Physiology Journal, 2000, 26(6): 481-486.
    [16] Wheeler G. L., Jones M. A. and Smirnoff N. The biosynthetic pathway of vitamin C in higher plants[J]. Na- ture, 1998, 393 (6683): 365-369.
    [17] Siendones E., Gonzalez-Reyes J. A., Santos-Ocana C., Navas P. and Cordoba F. Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane [J]. Plant Physiology, 1999,120(3):907-912.
    [18] Bartoli C. G., Pastori G. M. and Foyer C. H. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV [J]. Plant Physiology, 2000,123(1):335-343.
    [19] Tokunaga T, Miyahara K., Tabata K. and Esaka M. Generation and properties of ascorbic acid- over producing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase[J]. Planta. 2005,220(6):854-863.
    [20] Lebaudy A, Vavasseur A, Hosy E, et al. Plant adaptaction to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels[ J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105( 13) : 5271- 5276.
    [21] Plumley F G, Schmidt G W. Light-harvesting chlorophyll a/b complexes :interdependent pigment synthesis and protein assembly [J]. The Plant Cell, 1995,(7):689-704.
    [22] 应叶青, 郭璟, 魏建芬, 等.水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应[J].北京林业大学学报, 2009,31(6):128 -133.
    Ying Y Q, Guo J, Wei J F. Photosynthetic and chlorophyll fluorescent responses of Phyllostachys pubescens seedlings to water deficiency stress[J]. Journal of Beijing Forestry University, 2009,31(6)128--133
    [23] Baker N R. Chlorophy ll fluorescence: a probe of photosynthesis in vivo [J]. Annual Review of Plant Biolog y, 2008, 59: 89- 113.
    [24] Gray G R, Hope B J, Qin X Q, et al. The characterization o f photoinhibition and r ecovery during cold ac- climation in Arabidopsis thaliana using chlorophyll fluorescence imaging [J]. Physiologia Plantarum, 2003, 119 (3): 365 -375.

    [1] Zolla L, Rinalducci S. Involvement of active oxygen species in degradation of light- harvesting proteins un- der light stresses[J]. Bio-chemistry, 2002, 41( 48):14391- 14402.
    [2] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48:93–96.
    [3] 刘国艳. 自由基的生物学效应及自由基清除系统的功能特性[J]. 上海交通大学学报, 2001(20):93-96.
    Liu G Y. The biological effects of free radicals and the characteristic of radical scavenging system [J]. Shanghai Jiao Tong University Journal, 2010(20):93-96.
    [4] Vass I. Molecular mechanisms of photo-damage in the photosystem II complex[J]. Biochim Biophysica Acta, 2012:209–217.
    [5] Asada K. The water-water cycle as alternative photon and electron sinks[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2000,355(1402):1419-1431.
    [6] Foyer C H, Lelandais M and Kunert K J. Photooxidative stress in plants [J]. Physiologia Plantarum, 1994,92 (4):696-717.
    [7] NOCTOR G, FOYER C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Plant Physiol, 1998,49: 249- 279.
    [8] Allen J F. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise[J]. Cell, 2002,110(3):273-276.
    [9] Gallie D R. The role of L-ascorbic acid recycling in responding to environmental stess and in promoting plant growth [J]. Phyton-International Journal of Experimental Botany, 2013,64(2):433-443.
    [10] Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress [J]. Phyton-International Journal of Experimental Botany, 2003,54(391):2285-2292.
    [11] Gillespie K. M. and Ainsworth E. A. Measurement of reduced, oxidized and total ascorbate content in plants [J]. Nature Protocols, 2007,2 (4): 871-874.
    [12] Romero-puertas M C, Rodriguez-Serrano M, Corpas F J,et al, Cadmium-induced subcellular accumulation of O2.-and H2O2 in pea leaves [J]. Cell and Environment, 2004,27:1122-1134.
    [13] 张卫星,朱德峰,林贤青等. 穗生长发育阶段水分逆境对超级稻叶片丙二醛含量的影响.华北农学报[J], 2008,23(3):72-76.
    Zhang W X, Zhu D F, Lin X Q. The effect of water adversity on malondialdehyde content in super rice leaves during panicle growth and development stage[J]. Acta Agriculturae Boreali-Sinica, 2008,23(3): 72-76.
    [14] 林植芳,李双顺,林桂珠, 等. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J]. 植物学报, 1984, 26(6):605-615.
    Lin Z F, Li S S, Lin G Z, et al. Superoxide dismutase activity and Lipid peroxidation in relation to senescence of rice leaves[J]. Plant Journal, 1984, 26(6):605-615.
    [15] 刘拥海,彭新湘,李明启. 水稻叶片中过氧化氢与核酮糖-1,5-二磷酸羧化酶/加氧酶降解的关系[J]. 植物生理学报, 2000, 26 (6): 481-486.
    Liu Y H, Peng X X, Li M Q. Degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in Rice leaves under oxidative stress induced by methyl viologen[J]. Plant Physiology Journal, 2000, 26(6): 481-486.
    [16] Wheeler G. L., Jones M. A. and Smirnoff N. The biosynthetic pathway of vitamin C in higher plants[J]. Na- ture, 1998, 393 (6683): 365-369.
    [17] Siendones E., Gonzalez-Reyes J. A., Santos-Ocana C., Navas P. and Cordoba F. Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane [J]. Plant Physiology, 1999,120(3):907-912.
    [18] Bartoli C. G., Pastori G. M. and Foyer C. H. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV [J]. Plant Physiology, 2000,123(1):335-343.
    [19] Tokunaga T, Miyahara K., Tabata K. and Esaka M. Generation and properties of ascorbic acid- over producing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase[J]. Planta. 2005,220(6):854-863.
    [20] Lebaudy A, Vavasseur A, Hosy E, et al. Plant adaptaction to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels[ J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105( 13) : 5271- 5276.
    [21] Plumley F G, Schmidt G W. Light-harvesting chlorophyll a/b complexes :interdependent pigment synthesis and protein assembly [J]. The Plant Cell, 1995,(7):689-704.
    [22] 应叶青, 郭璟, 魏建芬, 等.水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应[J].北京林业大学学报, 2009,31(6):128 -133.
    Ying Y Q, Guo J, Wei J F. Photosynthetic and chlorophyll fluorescent responses of Phyllostachys pubescens seedlings to water deficiency stress[J]. Journal of Beijing Forestry University, 2009,31(6)128--133
    [23] Baker N R. Chlorophy ll fluorescence: a probe of photosynthesis in vivo [J]. Annual Review of Plant Biolog y, 2008, 59: 89- 113.
    [24] Gray G R, Hope B J, Qin X Q, et al. The characterization o f photoinhibition and r ecovery during cold ac- climation in Arabidopsis thaliana using chlorophyll fluorescence imaging [J]. Physiologia Plantarum, 2003, 119 (3): 365 -375.
  • 加载中
计量
  • 文章访问数:  855
  • HTML全文浏览量:  112
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-17
  • 修回日期:  2015-04-14
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回