留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于加权海明距离的自适应遗传算法

徐承爱 林伟 肖红

徐承爱, 林伟, 肖红. 一种基于加权海明距离的自适应遗传算法[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 121-127.
引用本文: 徐承爱, 林伟, 肖红. 一种基于加权海明距离的自适应遗传算法[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 121-127.
An Adaptive Genetic Algorithm Based on Weighted Hamming Distance[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 121-127.
Citation: An Adaptive Genetic Algorithm Based on Weighted Hamming Distance[J]. Journal of South China normal University (Natural Science Edition), 2015, 47(6): 121-127.

一种基于加权海明距离的自适应遗传算法

基金项目: 

广州市科技计划基金项目

详细信息
    通讯作者:

    徐承爱

  • 中图分类号: TP18

An Adaptive Genetic Algorithm Based on Weighted Hamming Distance

  • 摘要: 针对普通遗传算法易出现早熟收敛和搜索效率低的缺陷,提出一种基于加权海明距离的自适应遗传算法。该算法综合考虑个体间加权海明距离和适应度值,自适应调整交叉概率和变异概率;采用精英保留法,保证最优个体不被破坏;使用双重停机准则,减少不必要的计算时间,提高遗传搜索效率。最后,运用经典测试函数对该算法进行了仿真实验。结果表明,该算法可以显著提高遗传优化的全局搜索能力,加快遗传算法的收敛速度。
  • [1] 王小平,曹立明. 遗传算法-理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002.
    [2] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans. On Syst., Man and Cybern., 1994, 24(4): 656-667.
    [3] 任子武,伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J]. 系统仿真学报,2006,18(1):41-43.
    REN Zi-wu,SAN Ye. Improved Adaptive Genetic Algorithm and its Application Research in Parameter Identification[J]. Journal of Sys- tem Simulation,2006,18(1):41-43.
    [4] 王杰,马雁,王非. 一种双变异率的改进遗传算法及其仿真研究[J]. 计算机工程与应用,2008,44(3):57-59.
    WANG Jie,MA Yan,WANG Fei. Study of improved genetic algorithm based on dual muta- tion and its simulation[J].Computer Engineering and Applications,2008,44(3):57-59.
    [5] 田丰,姚爱民,孙小平,王传云,范立磊. 基于个体相似度的双种群遗传算法[J]. 计算机工程与应用,2011,32(5):1789-1791.
    TIAN Feng, YAO Ai-min, SUN Xiao-ping, WANG Chuan-yun, FAN Li-lei. Dual population genetic algorithm based on individual similarity[J]. Computer Engineering and Applications,2011,32(5):1789-1791.
    [6] 田小梅,郑金华,李合军. 基于父个体相似度的自适应遗传算法[J]. 计算机工程与应用,2005,4(18):61-63.
    Tian Xiaomei,Zheng Jinhua,Li Hejun.Adaptive Genetic Algorithm Based on Parents’Similarity[J]. Computer Engineering and Applications,2005,4(18):61-63.
    [7] 李军华,黎明,袁丽华. 基于个体相似度交叉率自适应的遗传算法[J]. 系统工程,2006,24(9):108-111.
    [8] 巩固,郝国生,王文虎. 基于海明距离改进的自适应遗传算法[J]. 江苏师范大学学报(自然科学版),2014,32(4):51-54.
    Gong Gu,Hao Guosheng,Wang Wenhu. Improved adaptive genetic algorithm based on Hamming distance[J]. Journal of Jiangsu Normal University(Natural Science Edition),2014,32(4):51-54.
    [9] 张琛,詹志辉. 遗传算法选择策略比较[J]. 计算机工程与设计,2009,30(23):5471-5474.
    ZHANG Chen, ZHAN Zhi-hui. Comparisons of selection strategy in genetic algorithm[J].Computer Engineering and Design,2009,30(23):5471-5474.
    [10] 金晶,苏勇. 一种改进的自适应遗传算法[J]. 计算机工程与应用,2005,41(18):64-69.
    Jin Jing,Su Yong. An Improved Adaptive Genetic Algorithm[J]. Computer Engineering and Applications,2005,41(18):64-69.
    [11] 梁兴建,詹志辉,谭 伟,彭建新. 基于最优保留策略的改进遗传算法[J]. 计算机工程与设计,2014,35(11):3985-3990.
    LIANG Xing-jian,ZHAN Zhi-hui,TAN Wei,PENG Jian-xin.Improved genetic algorithm based on elitist reserved strategy[J]. COMPUTER ENGINEERING AND DESIGN,2014,35(11):3985-3990.
    [12] S. L. Ho, Guizhi Xu, W. N. Fu. Optimization of Array Magnetic Coil Design for Functional MagneticStimulation Based on Improved Genetic Algorithm[J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45(10) :4849-4852
    [13] De Jong K A. An analysis of the behavior of a class of generic adaptive systems[D]. University o f Michigan, 1975.

    [1] 王小平,曹立明. 遗传算法-理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002.
    [2] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans. On Syst., Man and Cybern., 1994, 24(4): 656-667.
    [3] 任子武,伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J]. 系统仿真学报,2006,18(1):41-43.
    REN Zi-wu,SAN Ye. Improved Adaptive Genetic Algorithm and its Application Research in Parameter Identification[J]. Journal of Sys- tem Simulation,2006,18(1):41-43.
    [4] 王杰,马雁,王非. 一种双变异率的改进遗传算法及其仿真研究[J]. 计算机工程与应用,2008,44(3):57-59.
    WANG Jie,MA Yan,WANG Fei. Study of improved genetic algorithm based on dual muta- tion and its simulation[J].Computer Engineering and Applications,2008,44(3):57-59.
    [5] 田丰,姚爱民,孙小平,王传云,范立磊. 基于个体相似度的双种群遗传算法[J]. 计算机工程与应用,2011,32(5):1789-1791.
    TIAN Feng, YAO Ai-min, SUN Xiao-ping, WANG Chuan-yun, FAN Li-lei. Dual population genetic algorithm based on individual similarity[J]. Computer Engineering and Applications,2011,32(5):1789-1791.
    [6] 田小梅,郑金华,李合军. 基于父个体相似度的自适应遗传算法[J]. 计算机工程与应用,2005,4(18):61-63.
    Tian Xiaomei,Zheng Jinhua,Li Hejun.Adaptive Genetic Algorithm Based on Parents’Similarity[J]. Computer Engineering and Applications,2005,4(18):61-63.
    [7] 李军华,黎明,袁丽华. 基于个体相似度交叉率自适应的遗传算法[J]. 系统工程,2006,24(9):108-111.
    [8] 巩固,郝国生,王文虎. 基于海明距离改进的自适应遗传算法[J]. 江苏师范大学学报(自然科学版),2014,32(4):51-54.
    Gong Gu,Hao Guosheng,Wang Wenhu. Improved adaptive genetic algorithm based on Hamming distance[J]. Journal of Jiangsu Normal University(Natural Science Edition),2014,32(4):51-54.
    [9] 张琛,詹志辉. 遗传算法选择策略比较[J]. 计算机工程与设计,2009,30(23):5471-5474.
    ZHANG Chen, ZHAN Zhi-hui. Comparisons of selection strategy in genetic algorithm[J].Computer Engineering and Design,2009,30(23):5471-5474.
    [10] 金晶,苏勇. 一种改进的自适应遗传算法[J]. 计算机工程与应用,2005,41(18):64-69.
    Jin Jing,Su Yong. An Improved Adaptive Genetic Algorithm[J]. Computer Engineering and Applications,2005,41(18):64-69.
    [11] 梁兴建,詹志辉,谭 伟,彭建新. 基于最优保留策略的改进遗传算法[J]. 计算机工程与设计,2014,35(11):3985-3990.
    LIANG Xing-jian,ZHAN Zhi-hui,TAN Wei,PENG Jian-xin.Improved genetic algorithm based on elitist reserved strategy[J]. COMPUTER ENGINEERING AND DESIGN,2014,35(11):3985-3990.
    [12] S. L. Ho, Guizhi Xu, W. N. Fu. Optimization of Array Magnetic Coil Design for Functional MagneticStimulation Based on Improved Genetic Algorithm[J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45(10) :4849-4852
    [13] De Jong K A. An analysis of the behavior of a class of generic adaptive systems[D]. University o f Michigan, 1975.
  • 加载中
计量
  • 文章访问数:  828
  • HTML全文浏览量:  167
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-20
  • 修回日期:  2015-04-10
  • 刊出日期:  2015-11-25

目录

    /

    返回文章
    返回