L.A. Bokut, 陈裕群. 泛代数上的Groebner-Shirshov基理论[J]. 华南师范大学学报(自然科学版), 2014, 46(6): 1-9.
引用本文: L.A. Bokut, 陈裕群. 泛代数上的Groebner-Shirshov基理论[J]. 华南师范大学学报(自然科学版), 2014, 46(6): 1-9.
Gr\"{o}bner-Shirshov Bases for Universal Algebras[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 1-9.
Citation: Gr\"{o}bner-Shirshov Bases for Universal Algebras[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 1-9.

泛代数上的Groebner-Shirshov基理论

Gr\"obner-Shirshov Bases for Universal Algebras

  • 摘要: 综述了域上或交换代数上的线性(-)代数的相应的簇(范畴)的 Groebner-Shirshov 基理论的新成果,如:结合代数(包括群(半群)代数),自由代数的张量积,李代数,Di-代数,pre-李代数,Rota-Baxter代数,metabelian李代数,L-代数,半环代数,范畴代数,等.以上结果包含了许多应用,尤其是给出了一些著名结论的新的证明.

     

    Abstract: Some results were reviewed in Gr\obner-Shirshov bases method for different varieties (categories) of linear (\Omega-) algebras over a field k or a commutative algebra K over k: associative algebras (including group (semigroup) algebras), tensor product of free associative algebras, Lie algebras, dialgebras, pre-Lie (Vinberg right (left) symmetric) algebras, Rota-Baxter algebras, metabelian Lie algebras, L-algebras, semiring algebras, category algebras, etc. There are some applications particularly to new proofs of some known theorems.

     

/

返回文章
返回