留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属表面等离子激元的侧耦合半圆形腔-波导透射谱分析

徐兴恺 梁瑞生 于哲 黄桥东 陈丕欣

徐兴恺, 梁瑞生, 于哲, 黄桥东, 陈丕欣. 基于金属表面等离子激元的侧耦合半圆形腔-波导透射谱分析[J]. 华南师范大学学报(自然科学版), 2013, 45(2).
引用本文: 徐兴恺, 梁瑞生, 于哲, 黄桥东, 陈丕欣. 基于金属表面等离子激元的侧耦合半圆形腔-波导透射谱分析[J]. 华南师范大学学报(自然科学版), 2013, 45(2).
Spectrum analysis of side-coupled semicircular cavity-waveguide based on Surface Plasmon Polaritons[J]. Journal of South China normal University (Natural Science Edition), 2013, 45(2).
Citation: Spectrum analysis of side-coupled semicircular cavity-waveguide based on Surface Plasmon Polaritons[J]. Journal of South China normal University (Natural Science Edition), 2013, 45(2).

基于金属表面等离子激元的侧耦合半圆形腔-波导透射谱分析

基金项目: 

国家重点基础研究项目

详细信息
    通讯作者:

    梁瑞生

  • 中图分类号: TN252

Spectrum analysis of side-coupled semicircular cavity-waveguide based on Surface Plasmon Polaritons

Funds: 

National Basic Research Program of China

  • 摘要: 设计了一种新型的基于金属表面等离子激元(Surface Plasmon Polaritons,SPPs)的亚波长金属-介质-金属型滤波器.该滤波器由一个半圆形谐振腔和一个直波导组成.使用时域耦合模理论和传输变换矩阵方法对结构进行理论分析,并通过时域有限差分方法(the finite difference time domain method,FDTD)进行数值模拟得出光谱响应.讨论了几何参数对透射曲线的影响, 并设计了一种双腔结构来获得高对比度的透射曲线.
  • [1]BARNES W L, DEREUX A, EBBESEN T W.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830
    [2]GENET C, EBBESEN T W.Light in tiny holes[J].Nature,2007,445(7123):39-46
    [3]ZHONG Z J, XU Y, LAN S, et al.Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media[J].Opt Express,2010,18(1):79-86
    [4]WANG B, WANG G P.Surface plasmon polariton propagation in nanoscale metal gap waveguides[J].Opt Lett,2004,29(17):1992-1994
    [5]CHEN P X, LIANG R S, HUANG Q D, et al.Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure[J].Opt Express,2011,19(8):7633-7639
    [6]HAN Z H, LIU L, FORSBERG E.Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons[J].Opt Commun,2006,259:690-695
    [7]VERONIS G, FAN S.Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J].Appl Phys Lett,2005,87(13):131102-131104
    [8]WANG B, WANG G P.Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J].Appl Phys Lett,2005,87(1):013107-013109
    [9]HAN Z H, FORSBERG E, HE S.Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides[J].IEEE Photon Technol Lett,2007,19(2):91-93
    [10]HOSSEINI A, MASSOUD Y.A low-loss metal-insulator-metal plasmonic bragg reflector[J].Opt Express,2006,14(23):11318-11323
    [11]LIU J Q, WANG L L, HE M D, et al.A wide bandgap plasmonic Bragg reflector[J].Opt Express,2008,16(7):4888-4894
    [12]KRASAVIN V, ZAYATS A V.All-optical active components for dielectric-loaded plasmonic waveguides[J].Opt Commun,2010,283:1581-1584
    [13]MEI X, HUANG X G, TAO J, et al.A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities[J].J Opt Soc Am B,2010,27(12):2707-2713
    [14]WANG G, LU H, LIU X M, et al.Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J].Opt Express,2011,19(4):3513-3518
    [15]HU F F, YI H X, ZHOU Z P.A wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J].Opt Lett,2011,36(8):1500-1502
    [16]ZHANG Q, HUANG X G, LIN X S, et al.A subwavelength coupler-type MIM optical filter[J].Opt Express,2009,17(9):7549-7554
    [17]LU H, LIU X M, MAO D, et al.Tunable band-pass plasmonic waveguide filters with nanodisk resonators[J].Opt Express,2010,18(17):17922-17927
    [18]WANG B, WANG G P.Plasmonic waveguide ring resonator at terahertz frequencies[J].Appl Phys Lett,2006,89(13):133106-133108
    [19]LIN X S, HUANG X G.Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J].Opt Lett,2008,33(23):2874-2876
    [20]XIAO S S, LIU L, QIU M.Resonator channel drop filters in a plasmon-polaritons metal[J].Opt Express,2006,14(7):2932-2937
    [21]CHEN P X, LIANG R S, HUANG Q D, et al.Plasmonic filter with sub-waveguide coupled to vertical rectangular resonator structure[J].Opt Commun,2011,284(19):4795-4799
    [22]LI Q, WANG T, SU Y K, et al.Coupled mode theory analysis of mode-splitting in coupled cavity system[J].Opt Express,2010,18(8):8367-8382
    [23]DITLBACHER H, KRENN J R, SCHIDER G, et al.Two-dimensional optics with surface plasmon polaritons[J].Appl Phys Lett,2002,81(10):1762-1764
    [24]JOHNSON P B, CHRISTY R W.Optical constants of the noble metals[J].Phys Rev B,1972,6(12):4370-4379

    [1]BARNES W L, DEREUX A, EBBESEN T W.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830
    [2]GENET C, EBBESEN T W.Light in tiny holes[J].Nature,2007,445(7123):39-46
    [3]ZHONG Z J, XU Y, LAN S, et al.Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media[J].Opt Express,2010,18(1):79-86
    [4]WANG B, WANG G P.Surface plasmon polariton propagation in nanoscale metal gap waveguides[J].Opt Lett,2004,29(17):1992-1994
    [5]CHEN P X, LIANG R S, HUANG Q D, et al.Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure[J].Opt Express,2011,19(8):7633-7639
    [6]HAN Z H, LIU L, FORSBERG E.Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons[J].Opt Commun,2006,259:690-695
    [7]VERONIS G, FAN S.Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J].Appl Phys Lett,2005,87(13):131102-131104
    [8]WANG B, WANG G P.Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J].Appl Phys Lett,2005,87(1):013107-013109
    [9]HAN Z H, FORSBERG E, HE S.Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides[J].IEEE Photon Technol Lett,2007,19(2):91-93
    [10]HOSSEINI A, MASSOUD Y.A low-loss metal-insulator-metal plasmonic bragg reflector[J].Opt Express,2006,14(23):11318-11323
    [11]LIU J Q, WANG L L, HE M D, et al.A wide bandgap plasmonic Bragg reflector[J].Opt Express,2008,16(7):4888-4894
    [12]KRASAVIN V, ZAYATS A V.All-optical active components for dielectric-loaded plasmonic waveguides[J].Opt Commun,2010,283:1581-1584
    [13]MEI X, HUANG X G, TAO J, et al.A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities[J].J Opt Soc Am B,2010,27(12):2707-2713
    [14]WANG G, LU H, LIU X M, et al.Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J].Opt Express,2011,19(4):3513-3518
    [15]HU F F, YI H X, ZHOU Z P.A wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J].Opt Lett,2011,36(8):1500-1502
    [16]ZHANG Q, HUANG X G, LIN X S, et al.A subwavelength coupler-type MIM optical filter[J].Opt Express,2009,17(9):7549-7554
    [17]LU H, LIU X M, MAO D, et al.Tunable band-pass plasmonic waveguide filters with nanodisk resonators[J].Opt Express,2010,18(17):17922-17927
    [18]WANG B, WANG G P.Plasmonic waveguide ring resonator at terahertz frequencies[J].Appl Phys Lett,2006,89(13):133106-133108
    [19]LIN X S, HUANG X G.Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J].Opt Lett,2008,33(23):2874-2876
    [20]XIAO S S, LIU L, QIU M.Resonator channel drop filters in a plasmon-polaritons metal[J].Opt Express,2006,14(7):2932-2937
    [21]CHEN P X, LIANG R S, HUANG Q D, et al.Plasmonic filter with sub-waveguide coupled to vertical rectangular resonator structure[J].Opt Commun,2011,284(19):4795-4799
    [22]LI Q, WANG T, SU Y K, et al.Coupled mode theory analysis of mode-splitting in coupled cavity system[J].Opt Express,2010,18(8):8367-8382
    [23]DITLBACHER H, KRENN J R, SCHIDER G, et al.Two-dimensional optics with surface plasmon polaritons[J].Appl Phys Lett,2002,81(10):1762-1764
    [24]JOHNSON P B, CHRISTY R W.Optical constants of the noble metals[J].Phys Rev B,1972,6(12):4370-4379
  • 加载中
计量
  • 文章访问数:  734
  • HTML全文浏览量:  75
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-02
  • 修回日期:  2012-12-11
  • 刊出日期:  2013-03-25

目录

    /

    返回文章
    返回