陈继培, 陈浩. (g^{'}/g^{2})展开法及其在耦合非线性Klein-Gordon方程中的应用[J]. 华南师范大学学报(自然科学版), 2012, 44(2).
引用本文: 陈继培, 陈浩. (g^{'}/g^{2})展开法及其在耦合非线性Klein-Gordon方程中的应用[J]. 华南师范大学学报(自然科学版), 2012, 44(2).
Ji-Pei Chen, . THE (g^{'}/g^{2})-EXPANSION METHOD AND ITS APPLICATION TO COUPLED NONLINEAR KLEIN-GORDON EQUATION[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(2).
Citation: Ji-Pei Chen, . THE (g^{'}/g^{2})-EXPANSION METHOD AND ITS APPLICATION TO COUPLED NONLINEAR KLEIN-GORDON EQUATION[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(2).

(g^'/g^2)展开法及其在耦合非线性Klein-Gordon方程中的应用

THE (g^'/g^2)-EXPANSION METHOD AND ITS APPLICATION TO COUPLED NONLINEAR KLEIN-GORDON EQUATION

  • 摘要: 应用(g^'/g^2)展开法构造出耦合非线性Klein-Gordon方程的精确解,得到了双曲函数通解、三角函数通解和有理函数通解三种通解.当双曲函数通解中的参数取特殊值时,得到了孤立波解.三角函数通解中引入一个参量后,可得到对应通解的周期波函数解.

     

    Abstract: Using the(g^'/g^2)-expansion method,exact solutions for coupled nonlinear Klein-Gordon equation are constructed. As a result, the hyperbolic function solutions, trigonometric function solutions, and rational solutions with arbitrary parameters to the equations are obtained. When the arbitrary parameters in hyperbolic function solutions are taken as special values, the solitary wave solutions can be obtained. By introducing a parameter, the trigonometric function solutions can be expressed as periodic wave solutions.

     

/

返回文章
返回