Regular Simple ω2-Semigroups with ωd, d′-Type Relation
-
摘要:
为得到正则单ω2-半群构造的刻画, 研究了具有ωd, d′-型关系的正则单ω2-半群: 从群的长度为(d, d′)的ω-链及其到群的同态出发, 借助Bruck-Reilly扩张, 获得了具有ωd, d′-型关系的正则单ω2-半群; 证明了任一个具有ωd, d′-型关系的正则单ω2-半群都可以用Bruck-Reilly扩张构造出来, 得到了这类半群的结构定理。
-
关键词:
- 正则半群 /
- 单ω2-半群 /
- Bruck-Reilly扩张
Abstract:To obtain the characterization of regular simple ω2-semigroups, the regular simple ω2-semigroups with ωd, d′-type relations are studied. Starting from the ω-chains of groups with length (d, d′) and the homomorphism from the ω-chains of groups with length (d, d′) to the group, by using Bruck-Reilly expansion, the regular simple ω2-semigroups with ωd, d′-type relations are obtained. It is proved that any regular simple ω2-semigroup with ωd, d′-type relations can be constructed by Bruck-Reilly extension, and the structure theorem of this kind of semigroups is obtained.
-
Keywords:
- regular semigroup /
- simple ω2-semigroup /
- Bruck-Reilly extension
-
-
[1] REILLY N R. Bisimple ω-semigroups[J]. Proceedings of the Glasgow Mathematical Association, 1966(7): 160-167.
[2] MUNN W D. Regular ω-semigroups[J]. Glasgow Mathematical Journal, 1968(9): 46-66.
[3] WARNE R J. A characterization of certain regular d-classes in semigroups[J]. Illinois Mathematical Journal, 1965(9): 304-306.
[4] WARNE R J. Bisimple inverse semigroups mod groups[J]. Duke Mathematical Journal, 1967(34): 787-811.
[5] 汪立民, 商宇. 正则双单ω2-半群[J]. 数学进展, 2008, 37(1): 121-122. WANG L M, SHANG Y. Regular bisimple ω2-semigroups[J]. Advances in Mathematics Journal, 2008, 37(1): 121-122.
[6] 商宇, 汪立民. 一类正则单ω2-半群-I[J]. 数学进展, 2013, 42(5): 631-643. SHANG Y, WANG L M. A class of regular simple ω2-semigroups-I[J]. Advances in Mathematics Journal, 2013, 42(5): 631-643.
[7] 商宇, 汪立民. 型A ω2-半群[J]. 数学进展, 2015, 44(4): 519-529. SHANG Y, WANG L M. Type A ω2-semigroups[J]. Advances in Mathematics Journal, 2015, 44(4): 519-529.
[8] 商宇, 冯莹莹, 汪立民. 正则ω2-半群[J]. 云南大学学报(自然科学版), 2018, 40(3): 415-422. SHANG Y, FENG Y Y, WANG L M. Regular ω2-semigroups[J]. Journal of Yunnan University(Natural Sciences Edition), 2018, 40(3): 415-422.
[9] 彭娇, 宫春梅. 幂等元集为正规带的r-宽大半群[J]. 云南大学学报(自然科学版), 2022, 44(5): 895-901. PENG J, GONG C M. r-wide semigroups whose idempotents form normal band[J]. Journal of Yunnan University(Natural Sciences Edition), 2022, 44(5): 895-901.
[10] 白雪娜, 宫春梅. 具有中间幂等元的r-宽大半群[J]. 云南大学学报(自然科学版), 2024, 46(1): 1-7. BAI X N, GONG C M. r-wide semigroups with medial idempotents[J]. Journal of Yunnan University(Natural Sciences Edition), 2024, 46(1): 1-7.
[11] 倪翔飞, 郭小江. 具有弱中间幂等元的正则半群[J]. 数学学报(中文版), 2018, 61(1): 107-122. NI X F, GUO X J. Regular semigroups with weak medial idempotents[J]. Acta Mathematica Sinica(Chinese Series), 2018, 61(1): 107-122.
[12] EI-QALLALI A. Abundant semigroups with medial idempotents[J]. Categories and General Algebralc Structures with Applications Journal, 2021(15): 1-34.
[13] 刘海军, 郭小江. 左富足半群上的同余[J]. 数学进展, 2023, 52(2): 305-318. LIU H J, GUO X J. Congruences on left abundant semigroups[J]. Advances in Mathematics Journal, 2023, 52(2): 305-318.
[14] LIU H J, GUO X J. Congruences on glrac semigroups(I)[J]. Journal Algebra Application, 2022, 21(12): 2250240/1-18.
[15] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Clarendon Press, 1995.
[16] PETRICH M. Inverse semigroups[M]. New York: Wiley-Interscience, 1984.
-
期刊类型引用(1)
1. 王锦丽,钟春晓,李蓉,任喜梅. 超常介质中空间光孤子传输特性研究. 激光杂志. 2021(11): 36-40 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 29
- HTML全文浏览量: 10
- PDF下载量: 7
- 被引次数: 1