G-利普希茨跟踪性、G-等度连续和G-非游荡点集的研究

The Research of G-lipschitz Shadowing Property, G-equicontinuity and G-non-wandering Point Set

  • 摘要: 利用度量G-空间中映射f与轨道空间中诱导映射\hatf之间的性质,研究了映射fG-利普希茨跟踪性、G-等度连续、G-非游荡点与诱导映射\hatf的利普希茨跟踪性、等度连续、非游荡点集之间的动力学关系,得到如下结论:(1)映射f具有G-利普希茨跟踪性⇔诱导映射\hatf具有利普希茨跟踪性;(2)映射fG-等度连续的⇔诱导映射\hatf是等度连续的;(3)映射fG-非游荡点集ΩG(f)在X中稠密⇔诱导映射\hatf的非游荡点集Ω(\hatf)在X/G中稠密。

     

    Abstract: By using the properties between the map f in metric G-space and induced map \hatf in orbital space, the dynamical relationship between G-Lipschitz shadowing property, G-equicontinuity, G-non-wandering point of the map f and Lipschitz shadowing property, equicontinuity, non-wandering point of the induced map \hatf are studied. The following conclusions are obtained: (1)The map f has G-Lipschitz shadowing property if and only if the induced map \hatf has Lipschitz shadowing property. (2)The map f is G-equicontinuous if and only if the induced map \hatf is equicontinuous. (3)The G-non-wandering point set ΩG(f) of the map f is dense in X if and only if the non-wandering point set Ω(\hatf) of the induced map \hatf is dense in X/G.

     

/

返回文章
返回