一类非线性退化抛物方程的能稳性

李玲飞, 梁潇月, 张晓艺, 王岳山

李玲飞, 梁潇月, 张晓艺, 王岳山. 一类非线性退化抛物方程的能稳性[J]. 华南师范大学学报(自然科学版), 2024, 56(2): 100-104. DOI: 10.6054/j.jscnun.2024027
引用本文: 李玲飞, 梁潇月, 张晓艺, 王岳山. 一类非线性退化抛物方程的能稳性[J]. 华南师范大学学报(自然科学版), 2024, 56(2): 100-104. DOI: 10.6054/j.jscnun.2024027
LI Lingfei, LIANG Xiaoyue, ZHANG Xiaoyi, WANG Yueshan. The Stabilization of A Class of Nonlinear Degenerate Parabolic Equation[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 100-104. DOI: 10.6054/j.jscnun.2024027
Citation: LI Lingfei, LIANG Xiaoyue, ZHANG Xiaoyi, WANG Yueshan. The Stabilization of A Class of Nonlinear Degenerate Parabolic Equation[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 100-104. DOI: 10.6054/j.jscnun.2024027

一类非线性退化抛物方程的能稳性

基金项目: 

国家自然科学基金项目 12001087

详细信息
    通讯作者:

    李玲飞, Email: lingfeili@neepu.edu.cn

  • 中图分类号: O29

The Stabilization of A Class of Nonlinear Degenerate Parabolic Equation

  • 摘要:

    研究了一类非线性退化抛物方程的指数能稳性: 首先,利用边界提升的方法给出了齐次系统的指数能稳性;然后,借助加权Sobolev空间的嵌入定理和不动点定理得到非线性系统的局部指数能稳性。

    Abstract:

    The exponential stabilization of a class of nonlinear degenerate parabolic equation is investigated in this paper. The stabilization of the homogenous system is obtained by the method of lifting the boundary to the equation. Based on the imbedding theorems for the weighted Sobolev space, the exponential stabilization of the nonlinear system is established via the fixed point theorem.

  • [1]

    LIN P, GAO H, LIU X. Some results on a nonlinear degenerate parabolic system by bilinear control[J]. Journal of Mathematical Analysis Application, 2007, 326(2): 1149-1160. doi: 10.1016/j.jmaa.2006.03.079

    [2] 解春雷, 杜润梅. 一类半线性退化抛物方程在边界控制函数作用下的近似能控性[J]. 吉林大学学报(理学版), 2021, 59(3): 563-567. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202103020.htm

    XIE C L, DU R M. Approximate controllability of a class of semilinear degenerate parabolic equations with boundary control functions[J]. Journal of Jilin University(Science Edition), 2021, 59(3): 563-567. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202103020.htm

    [3]

    CANNARSA P, FRAGNELLI G, ROCCHETTI D. Controll-ability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[J]. Journal of Evolution Equations, 2008, 8: 583-616. doi: 10.1007/s00028-008-0353-34

    [4]

    WANG C P. Approximate controllability of a class of degenerate systems[J]. Applied Mathematics Computation, 2008, 203(1): 447-456. doi: 10.1016/j.amc.2008.04.056

    [5]

    CANNARSA P, MARTINEZ P, VANCOSTENOBLE J. Persistent regional null controllability for a class of degene-rate parabolic equations[J]. Communications on Pure and Applied Analysis, 2004, 3(4): 607-635.

    [6]

    CANNARSA P, FRAGNELLI G, VANCOSTENOBLE J. Regional controllability of semilinear degenerate parabolic equations in bounded domains[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2): 804-818. doi: 10.1016/j.jmaa.2005.07.006

    [7]

    GUEYE M. Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations[J]. SIAM Journal of Control and Optimization, 2014, 52(4): 2037-2054. doi: 10.1137/120901374

    [8]

    WANG C P. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy[J]. Discrete and Continuous Dynamical Systems, 2016, 36(2): 1041-1060.

    [9]

    GAO H, LI L F, LIU Z Y. Stability of degenerate heat equation in non-cylindrical/cylindrical domain[J]. Zeitschrift für Angewandte Mathematik und Physik, 2019, 70(4): 120/1-17.

    [10]

    BARBU V. Boundary stabilization of equilibrium solutions to parabolic equations[J]. IEEE Transactions on Automatic Control, 2013, 58(9): 2416-2420. doi: 10.1109/TAC.2013.2254013

    [11]

    CORON J M, NGUYEN H M. Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[J]. Archive for Rational Mechanics and Analysis, 2017, 225(3): 993-1023. doi: 10.1007/s00205-017-1119-y

    [12]

    CORON J M, LV Q. Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[J]. Journal of Differential Equations, 2015, 259(8): 3683-3729. doi: 10.1016/j.jde.2015.05.001

    [13]

    KRSTIC M, GUO B Z, BALOGH A, et al. Output-feedback stabilization of an unstable wave equation[J]. Automatica, 2008, 44(1): 63-74. doi: 10.1016/j.automatica.2007.05.012

    [14]

    GAGNON L, HAYAT A, XIANG S Q, et al. Fredholm transformation on Laplacian and rapid stabilization for the heat equation[J]. Journal of Functional Analysis, 2022, 283(12): 109664/1-57.

    [15]

    CORON J M, XIANG S Q. Small-time global stabilization of the viscous Burgers equation with three scalar controls[J]. Journal de Mathématiques Pures et Appliquées, 2021, 151: 212-256. doi: 10.1016/j.matpur.2021.03.001

    [16]

    BARBU V, WANG G S. Feedback stabilization of semili-near heat equations[J]. Abstract and Applied Analysis, 2003, 12: 697-714.

    [17]

    TRIGGIANI R. Boundary feedback stabilizability of parabolic equations[J]. Applied Mathematics and Optimization, 1980, 6: 201-220. doi: 10.1007/BF01442895

    [18]

    ARGOMEDO F B, PRIEUR C, WITRANT E, et al. A strict control Lyapunov function for a diffusion equation with time-varying distributed coefficients[J]. IEEE Transactions on Automatic Control, 2013, 58(2): 290-303. doi: 10.1109/TAC.2012.2209260

    [19]

    LIONS J L. Exact controllability, stabilization and perturbations for distributed systems[J]. SIAM Review, 1988, 30(1): 1-68. doi: 10.1137/1030001

    [20]

    LIU W J, KRISTIC M. Backstepping boundary control of Burgers' equation with actuator dynamics[J]. Systems & Control Letters, 2000, 41(4): 291-303.

    [21]

    LIU H B, HU P, MUNTEANU I. Boundary feedback stabilization of Fisher's equation[J]. Systems & Control Le-tters, 2016, 97: 55-60.

    [22]

    BARBU V, LASIECKA I, TRIGGIANI R. Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback contro-llers[J]. Nonlinear Analysis-Theory Methods & Applications, 2006, 64(12): 2704-2746.

  • 期刊类型引用(12)

    1. 黎明杰,蒋彬,郭晋川,潘越,蒋然,廖玉宏,张晓红,朱新海,陈子龙. 我国南方桉树人工林区水体泛黑物质分子组成及形成机理. 湖泊科学. 2024(04): 1069-1082 . 百度学术
    2. 王娟,黄婷婷,赵辉,刘晓林,金平伟,史燕东. 华南典型林分迹地植被覆盖变化对土壤侵蚀的影响分析. 人民珠江. 2024(08): 48-56 . 百度学术
    3. 孝惠爽,赵杰,傅声雷. 华南典型尾叶桉纯林经营对土壤理化性质、微生物和线虫群落的影响. 生态学报. 2023(19): 7963-7973 . 百度学术
    4. 韦振道,伍琪,任世奇. 桉树人工林地表水土流失研究现状. 桉树科技. 2022(04): 63-68 . 百度学术
    5. 任世奇,陈健波,朱原立,苏福聪,韦振道,伍琪. 尾巨桉人工林小流域降水产流特征分析. 生态环境学报. 2021(02): 305-312 . 百度学术
    6. 朱雅,李一平,罗凡,李荣辉,黄列,程一鑫,蒋裕丰. 我国南方桉树人工林区水库沉积物污染物的分布特征及迁移规律. 环境科学. 2020(05): 2247-2256 . 百度学术
    7. 蔡远松. 林木采伐作业对水土保持的影响及应对措施探讨. 亚热带水土保持. 2020(02): 51-52 . 百度学术
    8. 李一平,罗凡,李荣辉,郭晋川. 桉树人工林区水体泛黑机理研究进展. 河海大学学报(自然科学版). 2019(05): 393-401 . 百度学术
    9. 王一佩,薛雨,杨钙仁,苏晓琳,武鹏帅,温志良,邓羽松. 林道修建和采伐作业对桉树人工林土壤侵蚀的影响. 水土保持研究. 2019(06): 1-6 . 百度学术
    10. 朱群华,钟昌琴,谌建宇,刘钢,赖后伟,宁寻安. 水源地桉树人工林林区水体潜在风险浅析. 净水技术. 2017(08): 26-31 . 百度学术
    11. 赵庆,钱万惠,严俊,唐洪辉. 珠三角地区森林景观改造研究——以展旗岗森林景观改造为例. 林业与环境科学. 2016(04): 92-97 . 百度学术
    12. 李相林,谢华,彭波,谢洲,杨瑞刚. 速生桉种植中氮素对饮用水源地水质的影响. 南方农业学报. 2016(11): 1849-1855 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  47
  • HTML全文浏览量:  11
  • PDF下载量:  28
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-04-23
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回