The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions
-
摘要:
令H表示形如f(z)=z+a2z2+a3z3+⋯且在U={z:|z|<1}内解析的函数类,研究了在单位圆盘上的2类解析函数类STs={f?H:Re2zf′(z)f(z)−f(−z)>0,z?U}和R(12)={f?H:Ref(z)z>12,z?U}的三阶Hankel行列式|H3,1(f)|的上界估计。
-
关键词:
- 解析函数 /
- 有关对称点的星像函数类 /
- 三阶Hankel行列式
Abstract: Let H denote the family of all analytic functions with the formf(z)=z+a2z2+a3z3+⋯ in the unit diskU={z:|z|<1} . Two subclasses of analytic functions STs and R(1/2) which are difined in the unit disk U are introduced, respectively, i.e., STs={f?H:Re2zf′(z)f(z)−f(−z)>0,z?U},R(12)={f?H:Ref(z)z>12,z?U}. And the bounds of|H3,1(f)| for subfamilies of STs and R(1/2) are obtained. -
-
[1] POMMERENKE C. On the coefficients and Hankel determinants of univalent functions[J]. Journal of the London Mathematical Society, 1966, 41(1): 111-122.
[2] BABALOLA K O. On H3(1) Hankel determinant for some classes of univalent functions[J]. Inequality Theory and Applications, 2010, 6: 1-7.
[3] ZAPRAWA P. Third Hankel determinants for subclasses of univalent functions[J]. Mediterranean Journal of Mathematics, 2017, 14: 19/1-19.
[4] KOWALCZYK B, LECKO A, LECKO M, et al. The sharp bound of the third Hankel determinant for some classes of analytic functions[J]. Bulletin of the Korean Mathematical Society, 2018, 55(6): 1859-1868.
[5] KOWALCZYK B, LECKO A, SIM Y J. The sharp bound of the Hankel determinant for starlike functions[J]. Forum Mathematicum, 2022, 34(5): 1249-1254.
[6] 张海燕, 汤获, 马丽娜. 某类解析函数的三阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086 ZHANG H Y, TANG H, MA L N. The third Hankel determinant for some class of analytic function[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086
[7] KRISHNA VAMSHEE D, VENKATESWARLU B, RAMREDDY T. Third Hankel determinant for starlike and convex functions with respect to symmetric points[J]. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia, 2016, LXX(1): 37-45.
[8] GUO D, AO E, TANG H, et al. Third Hankel determinant for the inverse of starlike and convex functions[J]. Communications in Mathematical Research, 2019, 35(4): 354-358.
[9] KOWALCZYK B, LECKO A, THOMAS D K. The sharp bound of the third Hankel determinant for convex functions of order -1/2[J]. Journal of Mathematical Inequalities, 2023, 17(1): 191-204.
[10] GUO D, TANG H, ZHANG J, et al. Improved upper bounds of third-order Hankel determinant for Ozaki close-to convex functions[J]. Symmetry, 2023, 15: 1176/1-8.
[11] SHI L, SHUTAYWI M, ALRESHIDI N, et al. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain[J]. Fractal and Fractional, 2022, 6: 223/1-21.
[12] ARI M, BARUKAB O M, KHAN S A, et al. The sharp bounds of Hankel determinants for families of three-leaf-type analytic functions[J]. Fractal and Fractional, 2022, 6: 219/1-35.
[13] SAKAGUCHI K. On a certain univalent mapping[J]. Journal of the Mathematical Society of Japan, 1959, 11: 72-75.
[14] RUSCHEWEYH S. Linear operators between class of prestarlike functions[J]. Commentarii Mathematici Helvetici, 1977, 52: 497-509.
[15] POMMERENKE C. Univalent functions[M]. Göttingen: Vandenhoeck & Ruprecht, 1975.
[16] LIBERA R J, ZLOTKIEWICZ E J. Early coefficients of the inverse of a regular convex functions[J]. Proceedings of the American Mathematical Society, 1982, 85(2): 225-230.
[17] KWON O S, LECKO A, SIM Y J. On the fourth coefficient of functions in the Caratheodory class[J]. Computational Methods and Function Theory, 2018, 18: 307-314.
-
期刊类型引用(1)
1. 王锦丽,钟春晓,李蓉,任喜梅. 超常介质中空间光孤子传输特性研究. 激光杂志. 2021(11): 36-40 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 51
- HTML全文浏览量: 18
- PDF下载量: 21
- 被引次数: 1