两类解析函数的三阶Hankel行列式的上界估计

郭栋, 汤获, 文传军, 李宗涛

郭栋, 汤获, 文传军, 李宗涛. 两类解析函数的三阶Hankel行列式的上界估计[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014
引用本文: 郭栋, 汤获, 文传军, 李宗涛. 两类解析函数的三阶Hankel行列式的上界估计[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014
GUO Dong, TANG Huo, WEN Chuanjun, LI Zongtao. The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014
Citation: GUO Dong, TANG Huo, WEN Chuanjun, LI Zongtao. The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 118-122. DOI: 10.6054/j.jscnun.2024014

两类解析函数的三阶Hankel行列式的上界估计

基金项目: 

国家自然科学基金项目 11561001

安徽省高校自然科学基金项目 KJ2018A0833

安徽省高校自然科学基金项目 KJ2020A0993

安徽省高校自然科学基金项目 KJ2020ZD74

内蒙古自治区高等学校科学研究项目 NJZY19211

详细信息
    通讯作者:

    郭栋, Email: gd791217@163.com

  • 中图分类号: O174.51

The Upper Bounds of the Third Hankel Determinant for Two Subclasses of Analytic Functions

  • 摘要:

    H表示形如f(z)=z+a2z2+a3z3+且在U={z:|z|<1}内解析的函数类,研究了在单位圆盘上的2类解析函数类STs={f?H:Re2zf(z)f(z)f(z)>0,z?U}R(12)={f?H:Ref(z)z>12,z?U}的三阶Hankel行列式|H3,1(f)|的上界估计。

    Abstract: Let H denote the family of all analytic functions with the form f(z)=z+a2z2+a3z3+ in the unit disk U={z:|z|<1}. Two subclasses of analytic functions STs and R(1/2) which are difined in the unit disk U are introduced, respectively, i.e., STs={f?H:Re2zf(z)f(z)f(z)>0,z?U},R(12)={f?H:Ref(z)z>12,z?U}. And the bounds of |H3,1(f)| for subfamilies of STs and R(1/2) are obtained.
  • [1]

    POMMERENKE C. On the coefficients and Hankel determinants of univalent functions[J]. Journal of the London Mathematical Society, 1966, 41(1): 111-122.

    [2]

    BABALOLA K O. On H3(1) Hankel determinant for some classes of univalent functions[J]. Inequality Theory and Applications, 2010, 6: 1-7.

    [3]

    ZAPRAWA P. Third Hankel determinants for subclasses of univalent functions[J]. Mediterranean Journal of Mathematics, 2017, 14: 19/1-19.

    [4]

    KOWALCZYK B, LECKO A, LECKO M, et al. The sharp bound of the third Hankel determinant for some classes of analytic functions[J]. Bulletin of the Korean Mathematical Society, 2018, 55(6): 1859-1868.

    [5]

    KOWALCZYK B, LECKO A, SIM Y J. The sharp bound of the Hankel determinant for starlike functions[J]. Forum Mathematicum, 2022, 34(5): 1249-1254.

    [6] 张海燕, 汤获, 马丽娜. 某类解析函数的三阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086

    ZHANG H Y, TANG H, MA L N. The third Hankel determinant for some class of analytic function[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 107-110. doi: 10.6054/j.jscnun.2018086

    [7]

    KRISHNA VAMSHEE D, VENKATESWARLU B, RAMREDDY T. Third Hankel determinant for starlike and convex functions with respect to symmetric points[J]. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia, 2016, LXX(1): 37-45.

    [8]

    GUO D, AO E, TANG H, et al. Third Hankel determinant for the inverse of starlike and convex functions[J]. Communications in Mathematical Research, 2019, 35(4): 354-358.

    [9]

    KOWALCZYK B, LECKO A, THOMAS D K. The sharp bound of the third Hankel determinant for convex functions of order -1/2[J]. Journal of Mathematical Inequalities, 2023, 17(1): 191-204.

    [10]

    GUO D, TANG H, ZHANG J, et al. Improved upper bounds of third-order Hankel determinant for Ozaki close-to convex functions[J]. Symmetry, 2023, 15: 1176/1-8.

    [11]

    SHI L, SHUTAYWI M, ALRESHIDI N, et al. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain[J]. Fractal and Fractional, 2022, 6: 223/1-21.

    [12]

    ARI M, BARUKAB O M, KHAN S A, et al. The sharp bounds of Hankel determinants for families of three-leaf-type analytic functions[J]. Fractal and Fractional, 2022, 6: 219/1-35.

    [13]

    SAKAGUCHI K. On a certain univalent mapping[J]. Journal of the Mathematical Society of Japan, 1959, 11: 72-75.

    [14]

    RUSCHEWEYH S. Linear operators between class of prestarlike functions[J]. Commentarii Mathematici Helvetici, 1977, 52: 497-509.

    [15]

    POMMERENKE C. Univalent functions[M]. Göttingen: Vandenhoeck & Ruprecht, 1975.

    [16]

    LIBERA R J, ZLOTKIEWICZ E J. Early coefficients of the inverse of a regular convex functions[J]. Proceedings of the American Mathematical Society, 1982, 85(2): 225-230.

    [17]

    KWON O S, LECKO A, SIM Y J. On the fourth coefficient of functions in the Caratheodory class[J]. Computational Methods and Function Theory, 2018, 18: 307-314.

  • 期刊类型引用(1)

    1. 王锦丽,钟春晓,李蓉,任喜梅. 超常介质中空间光孤子传输特性研究. 激光杂志. 2021(11): 36-40 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  51
  • HTML全文浏览量:  18
  • PDF下载量:  21
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-10-27
  • 网络出版日期:  2024-04-29
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回