Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

不同区域上广义非线性解析积分算子的单叶性

额尔敦其其格, 李书海

额尔敦其其格, 李书海. 不同区域上广义非线性解析积分算子的单叶性[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 112-117. DOI: 10.6054/j.jscnun.2024013
引用本文: 额尔敦其其格, 李书海. 不同区域上广义非线性解析积分算子的单叶性[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 112-117. DOI: 10.6054/j.jscnun.2024013
Eerdunqiqige, LI Shuhai. Univalency Conditions of A General Nonlinear Analytic Integral Operator with Different Domains[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 112-117. DOI: 10.6054/j.jscnun.2024013
Citation: Eerdunqiqige, LI Shuhai. Univalency Conditions of A General Nonlinear Analytic Integral Operator with Different Domains[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 112-117. DOI: 10.6054/j.jscnun.2024013

不同区域上广义非线性解析积分算子的单叶性

基金项目: 

国家自然科学基金项目 11561001

内蒙古自治区自然科学基金项目 2019MS01023

内蒙古自治区高等学校科学研究项目 NJZZ19209

详细信息
    通讯作者:

    李书海, Email: lishms66@163.com

  • 中图分类号: O174.51

Univalency Conditions of A General Nonlinear Analytic Integral Operator with Different Domains

  • 摘要:

    利用从属关系和单叶函数充分条件, 研究某些广义非线性解析积分算子Jn,σ(An,Bn)(z), 得到该解析积分算子在不同区域上单叶的充分条件, 推广了相关的非线性解析积分算子单叶的充分性, 并导出有关条形区域的积分算子单叶的充分条件。

    Abstract:

    By using the subordination relationship and the sufficient conditions of univalent functions, some generalized nonlinear analytic integral operators Jn,σ(An,Bn)(z) are researched, and the sufficient conditions for the analytic integral operator to be univalent in different regions are obtained. The sufficiency of the relevant nonlinear analytic integral operator to be univalent are generalized. The sufficient conditions for integral operators to be univalent in a strip region are derived.

  • 设函数s(z)t(z)U={z?≫:|z|<1}内解析, 若存在解析函数ν:ν(0)=0,|ν(z)|<1(z?U), 满足条件s(z)=t(ν(z))(z?U), 则称s(z)从属于t(z), 记为s(z)t(z)。特别地, 由文献[1]可知, 设t(z)U内单叶, 则

    s(z)t(z)s(0)=t(0),s(U)t(U)

    H表示在U内解析且具有形式

    h(z)=z+k=2akzk

    的函数类;用S表示H中的单叶函数子类;用¯P表示在U内解析且满足条件p(0)=1的函数p(z)组成的类; Re(p(z))表示函数p(z)的实部。

    由文献[2]可知, 设A,B?C,|A|1,|B|1pk(z)=1+n=kpkzk?¯P, 则pk(z)属于函数类Hk(A,B)当且仅当

    pk(z)1+Az1+Bz(k?N)

    Hk(A,B)易得特殊子类:

    P(β)=H1(12β,1)={p(z)?¯P:Re(p(z))>β(0β<1},H(γ)=H1(12γ,1)={p(z)?¯P:Re(p(z))<γ(γ>1)},

    及文献[3]、[4]中的特殊子类:

    L(A,B)={p(z)?H1(A,B):1B<A1},P(A,B;C,D)={p(z)?¯P:p(z)?L(A,B) 且 p(z)?H1(C,D)(C<D),z?U}

    近年来, 学者们研究了非线性解析积分算子单叶的充分性及其相关问题。如:PESCAR[5]在函数类H上引进了非线性积分算子

    Fα(z)=[αz0tα1h(t)dt]1α(α?C,Reα>0;h?H),

    给出了该算子的单叶性充分条件; BREAZ等[6]引进了积分算子Gn,α(z), 给出该算子的单叶性充分条件, 并推广了文献[5]的结果, 其中

    Gn,α(z)={[n(α1)+1]z0nj=1(gj(u))α1 du}1n(α1)+1((α?C,Reα>0,j=1,,n;gj?H);

    BREAZ和TOMA[7]引进了积分算子Hγ1,γ2,,γ[|η|]](z), 给出了该算子单叶性的充分条件, 并进一步推广文献[5]的结果, 其中

    Hγ1,γ2,,γ[|η|](z)={ηβz0uηβ1[|η|]j=1(fj(u)u)1γj du}1ηβ(γj,β,η?C,|η|?[0,1),j=1,,[|η|],β0;fj?H)

    有学者在不同函数类上研究积分算子Gn,α(z)Hγ1,γ2,,γ[|η|](z)的单叶性充分条件[8-9], 也有学者围绕着这2个积分算子进行单叶性及其应用研究[10-19]。已有结果均仅限于在函数的同一个映射区域内讨论了积分算子的单叶性充分条件, 目前还没有发现在不同映射区域内定义的积分算子单叶性的相关研究。

    本文研究不同区域上的一类广义非线性解析积分算子Jn,σ(An,Bn)(z), 给出某些算子单叶性的充分条件, 推广文献[10-15]的结果, 并得到文献[4]中有关条形区域解析函数P(A,B;C,D)的非线性积分算子的单叶性充分条件。

    λi,θi,σ?C,Reσ>0;μi,ηi?,ζi,τi?N(i=$1,2,,n)pi(z),qi(z)?¯P, 引进广义非线性解析积分算子Jn,σ(An,Bn)(z):¯Pn¯P

    Jn,σ(An,Bn)(z)={σz0uσ1exp[u0(An(t)+Bn(t))dt]du}1σ(z?U), (1)

    其中

    An(z)=1zni=1λi(pi(z)μi)τi,Bn(z)=1zni=1θi(qi(z)ηi)ζi, (2)

    且幂函数均取主值。

    由算子Jn,σ(An,Bn)(z)分别推出文献[10-13]中研究的特殊解析积分算子:

    Jσ,λ(p)(z)={σz0uσ1exp[u0λt(p(t)1)dt]du}1σ(p(z)?¯P), (3)
    Jn,θi(fi,gi)(z)={σz0[tσ1ni=1(fi(t)t)(gi(t)t)θi]dt}1σ(fi,gi?H), (4)
    Jλi,θi(fi,gi)(z)=z0[ni=1(fi(t))λi(gi(z)z)θi]dt(fi,gi?H), (5)
    Fλi,θi(z)=z0[ni=1(fi(t))λi(fi(z)z)θi]dt(fi?H)

    p1(z),q1(z)?¯P时,非线性解析积分算子J1,σ(A1,B1)(z)为文献[14]研究的算子。由式(3)可得到文献[15]的积分算子:

    Gα1,,αn,β,σ(z)={γz0[uγ1nj=1(ugj(u))αj(hj(u))β]du}1γ(gi,hi?H)

    下面给出研究积分算子Jn,σ(An,Bn)(z)的单叶性所需的引理:

    引理1[20]    设p?L(A,B),1B<A1|z|=r<1, 则

    1Ar1BrRe(p(z))|p(z)|1+Ar1+Br

    引理2[21]    设p?Hk(A,B),k?N,1A<B1|z|=r<1, 则

    1+Ark1+BrkRe(p(z))1Ark1Brk

    引理3    设p?H1(A,B),1A<B1|z|=r<1, 则

    1+Ar1+BrRe(p(z))|p(z)|1Ar1Br

    证明    根据复变函数的实部和模之间的关系, 有Re(p(z))|p(z)|。取k=1,由引理2易得

    1+Ar1+BrRe(p(z))|p(z)|

    再由从属关系可知, 若p?H1(A,B), 则存在解析函数ν:ν(0)=0,|ν(z)|<1(|z|=r<1), 使得

    |p(z)|=|1+Aν(z)1+Bν(z)|1Ar1Br

    从而得到引理3成立。证毕。

    引理4[5]    设α?CReα>0。若h?H满足

    1|z|2ReαReα|zh(z)h(z)|1(z?U),

    则算子

    Fα(z)=[αz0tα1h(t)dt]1α?S

    首先, 给出由式(3)定义的积分算子Jσ,λ(p)(z)$(p?L(A,B))单叶的充分条件。

    定理1    设p?L(A,B)。若1B<A1σ?C,λ?C+

    |λ|{Reσ(1+|B|)(2+|A+B|)(0<Reσ<1),1(1+|B|)(2+|A+B|)(Reσ1), (6)

    则由式(3)定义的算子Jσ,λ(p)(z)?S

    证明    令

    h(z)=z0exp(u0λ(p(t)1)t dt)du

    则易得h(0)=h(0)1=0

    zh(z)h(z)=λ(p(z)1) (7)

    由引理1和式(7), 可得

    1|z|2ReσReσ|zh(z)h(z)|=1|z|2ReσReσ|λ||p(z)1|1|z|2ReσReσ|λ|(1+A|z|1+B|z|+1)=1|z|2ReσReσ|λ|(2+(A+B)|z|1+B|z|)1|z|2ReσReσ|λ|(2+|A+B||z|1|B||z|)(z?U) (8)

    下面对Re σ进行分类讨论:

    (ⅰ)若0<Re σ<1, 则由指数函数的单调性可得

    1|z|2Reσ1|z|21B2|z|2, (9)

    其中,z?U,0B21

    (ⅱ)若Re σ≥1, 则由指数函数的单调性可得

    1|z|2ReσReσ1|z|21B2|z|2, (10)

    其中,z?U,0B21。由式(6)、(8)~(10), 可得

    1|z|2ReσReσ|zh(z)h(z)|{|λ|(1+|B|)(2+|A+B|)Reσ1(0<Reσ<1),|λ|(1+|B|)(2+|A+B|)1(Reσ1),

    其中z?U。利用引理4, 推出Jσ,λ(p)(z)?S证毕。

    其次,给出算子Jσ,λ(p)(z)(p?H1(A,B))单叶的充分条件:

    定理2    设p?H1(A,B)。若-1≤A<B≤1和σ?C,λ?C+

    |λ|{Reσ(1+|B|)(2(A+B))(0<Reσ<1),1(1+|B|)(2(A+B))(Reσ1),

    则式(3)定义的算子Jσ,λ(p)(z)?S

    类似定理1的证明方法,易得定理2。

    然后, 给出式(1)定义的算子Jn,σ(An,Bn)(z)单叶的充分条件:

    定理3    设i=1, 2, …, n; 1<Bi<Ai1;1<Di<Ci1;μi,ηi?;σ,λi,θi?CReσ>0。若pi?L(Ai,Bi),qi?L(Ci,Di)

    |Mn|{Reσ(0<Reσ<1),1(Reσ1), (11)

    其中

    Mn=ni=1[|λi|(1+Ai1+Bi+|μi|)τi+|θi|(1+Ci1+Di+|ηi|)ζi](τi,ζi?N+),

    则由式(1)定义的算子Jn,σ(An,Bn)(z)?S

    证明    首先假设函数h(z)

    h(z)=z0exp(u0(An(t)+Bn(t))dt)du(z?U), (12)

    其中Rn(z)Bn(z)由式(2)定义。由式(12)易得h(0)=h′(0)-1=0且

    zh(z)h(z)=zni=1λi(pi(z)μi)τi+zni=1θi(qi(z)ηi)ζi, (13)

    其中, pi?L(Ai,Bi),qi?L(Ci,Di)(i=1,2,,n)

    由引理1和式(13), 可得

    1|z|2ReσReσ|zh(z)h(z)|=1|z|2ReσReσ|zni=1(λi(pi(z)μi)τi+θi(qi(z)ηi)ζi)|1|z|2ReσReσni=1(|λi||pi(z)μi|τi+|θi||qi(z)ηi|ζi)1|z|2ReσReσni=1(|λi|||pi(z)|+μi|τi+|θi|||qi(z)|+ηi|ζζi)1|z|2ReσReσni=1[|λi|(1+Ai|z|1+Bi|z|+|μi|)τi+|θi|(1+Ci|z|1+Di|z|+|ηi|)ζi]

    下面对Re σ进行分类讨论:

    (ⅰ)若0<Re σ<1, 则由指数函数的单调性可得

    1|z|2Reσ1|z|21,

    其中z?U

    (ⅱ)若Re σ≥1, 则由指数函数的单调性可得

    1|z|2ReσReσ1|z|21,

    其中z?U

    由(ⅰ)和(ⅱ)结合式(12), 可得

    1|z|2ReσReσ|zh(z)h(z)|{1Reσni=1[|λi|(1+Ai1+Bi+|μi|)τi+|θi|(1+Ci1+Di+|ηi|)τi]1(0<Reσ<1),ni=1[|λi|(1+Ai1+Bi+|μi|)τi+|θi|(1+Ci1+Di+|ηi|)τi]1(Reσ1),

    其中z?U应用引理4可得算子Jn,σ(An,Bn)(z)?S证毕。

    定理4    设i=1,2,,n;1<Ai<Bi1;1<Ci<Di1;μi,ηi?;σ,λi,θi?C和Re σ>0。若pi?H1(Ai,Bi),qi?H1(Ci,Di)>且

    |Mn|{Reσ(0<Reσ<1),1(Reσ1),

    其中

    Mn=ni=1[|λi|(1Ai1Bi+|μi|)τi+|θi|(1Ci1Di+|ηi|)ζi](τi,ζi?N+;λ2i+θ2i0),

    则由式(1)定义的积分算子Jn,σ(An,Bn)(z)?S

    利用式(8)和引理4, 如同定理3的证明方法, 易证定理4。

    另外,还可得到条形区域的积分算子的单叶性充分条件:

    定理5    设i=1,2,,n;1<Bi<Ai1;1<Ci<Di1;μi,ηi?;σ,λi,θi?C和Re σ>0。若pi?L(Ai,Bi),qi?H1(Ci,Di), 且

    |Mn|{Reσ(0<Reσ<1),1(Reσ1),

    其中

    Mn=ni=1[|λi|(1+Ai1+Bi+|μi|)τi+|θi|(1Ci1Di+|ηi|)ζi](τi,ζi?N+),

    则由式(1)定义的算子Jn,σ(An,Bn)(z)?S

    证明    首先假设函数h(z)由式(12)定义, 再由引理1、引理2、引理4和式(13), 可得

    1|z|2ReσReσ|zh(z)h(z)|1|z|2ReσReσni=1(|λi|||pi(z)|+μi|τi+|θi|||qi(z)|+ηi|ζi)1|z|2ReσReσni=1[|λi|(1+Ai|z|1+Bi|z|+|μi|)τi+|θi|(1Ci|z|1Di|z|+|ηi|)ζi]

    接着类似定理3的证明, 易证结论成立, 详细证明过程略。证毕。

    定理1中取A=1, B=-1, 可得到如下推论, 该推论是文献[10]中的定理2.1:

    推论1[10]    设p?P。若Reσ>0,σ?C,λ?C+

    |λ|{Reσ4(0<Reσ<1),14(Reσ1),

    则由式(3)定义的算子Jσ,λ(p)(z)?S

    由定理1和定理2可得到文献[4]中函数类非线性积分算子单叶的充分性:

    推论2[4]    设p?P(A,B;C,D)。若-1≤B<A≤1;-1≤C<D≤1和σ?C,λ?C+

    |λ|{min

    则由式(3)定义的算子J_{\sigma, \lambda}(p)(z) ? \mathcal{S}

    若定理3中取\mathfrak{B}_{n}(z)=0(i=1, 2, \cdots, n), 可得到以下推论:

    推论3    设i=1, 2, \cdots, n ;-1<B_i<A_i \leqslant 1 ; \mu_i ? \gg; \sigma, \lambda_i ? \mathbb{C} 和 \operatorname{Re} \sigma>0。若 p_i ? L\left(A_i, B_i\right)

    \left|M_{n}\right| \leqslant\left\{\begin{array}{l} \operatorname{Re} \sigma \quad(0<\operatorname{Re} \sigma<1), \\ 1 \quad(\operatorname{Re} \sigma \geqslant 1), \end{array}\right.

    其中

    M_{n}=\sum\limits_{i=1}^{n}\left|\lambda_{i}\right|\left(\frac{1+A_{i}}{1+B_{i}}+\left|\mu_{i}\right|\right)^{\tau_{i}} \quad\left(\tau_{i} ? \mathbb{N}_{+}\right),

    则由式(1)定义的算子J_{n, \sigma}\left(\mathfrak{A}_{n}, 0\right)(z) ? \mathcal{S}

    在定理3中, 令\lambda_{i}=\tau_{i}=\zeta_{i}=\mu_{i}=\eta_{i}=1, \mathfrak{A}_{n}(z)=\$\frac{1}{z} \sum\limits_{i=1}^{n}\left(\frac{z f_{i}^{\prime}}{f_{i}}-1\right)+1, \mathcal{B}_{n}(z)=\frac{1}{z} \sum\limits_{i=1}^{n} \theta_{i}\left(\frac{z g_{i}^{\prime}}{g_{i}}-1\right)+1, 可得到以下推论:

    推论4    设i=1, 2, \cdots, n ; f_{i}, g_{i} ? H ;-1<B_{i}<A_{i} \leqslant 1 ;-1<D_{i}<C_{i} \leqslant 1 ; \sigma, \theta_{i} ? \mathbb{C} 和 \operatorname{Re} \sigma>0 。若 \frac{z f_{i}^{\prime}}{f_{i}} ? L\left(A_{i}, B_{i}\right), \frac{z g_{i}^{\prime}}{g_{i}} ? L\left(C_{i}, D_{i}\right)

    \left|M_{n}\right| \leqslant \begin{cases}\operatorname{Re} \sigma \quad (0<\operatorname{Re} \sigma<1), \\ 1 \quad(\operatorname{Re} \sigma \geqslant 1),\end{cases}

    其中

    M_{n}=\sum\limits_{i=1}^{n}\left[\left(\frac{1+A_{i}}{1+B_{i}}+1\right)+\left|\theta_{i}\right|\left(\frac{1+C_{i}}{1+D_{i}}+1\right)\right],

    则由式(4)定义的算子J_{n, \theta_i}\left(f_i, g_i\right)(z) ? \mathcal{S}

    在定理3中,令\sigma=1, \tau_{i}=\zeta_{i}=\mu_{i}=\eta_{i}=1, \mathfrak{A}_{n}(z)=\$\frac{1}{z} \sum\limits_{i=1}^{n} \lambda_{i}\left(\frac{z f_{i}^{\prime \prime}}{f_{i}}\right)+1, \mathcal{B}_{n}(z)=\frac{1}{z} \sum\limits_{i=1}^{n} \theta_{i}\left(\frac{z g_{i}^{\prime}}{g_{i}^{\prime}}-1\right)+1, 可得到以下推论, 该推论推广了文献[11]的定理3.3:

    推论5     设i=1, 2, \cdots, n ; f_{i}, g_{i} ? H ;-1<B_{i}<A_{i} \leqslant 1; -1<D_{i}<C_{i} \leqslant 1 ; \sigma, \lambda_{i}, \theta_{i} ? \mathbb{C}\operatorname{Re} \sigma>0 。若1+\frac{z f_i^{\prime \prime}}{f_i^{\prime}} ?L\left(A_i, B_i\right), \frac{z g_i^{\prime}}{g_i} ? L\left(C_i, D_i\right), 且

    M_{n}=\sum\limits_{i=1}^{n}\left[\left|\lambda_{i}\right|\left(\frac{1+A_{i}}{1+B_{i}}+1\right)+\left|\theta_{i}\right|\left(\frac{1+C_{i}}{1+D_{i}}+1\right)\right] \leqslant 1,

    则由式(5)定义的算子J_{\lambda_{i}, \theta_{i}}\left(f_{i}, g_{i}\right)(z) ? \mathcal{S}

    定理4中,令\lambda_{i}=\tau_{i}=\zeta_{i}=\mu_{i}=\eta_{i}=1, \mathfrak{A}_{n}(z)=\$\frac{1}{z} \sum\limits_{i=1}^{n}\left(\frac{z f_{i}^{\prime}}{f_{i}}-1\right)+1, \mathcal{B}_{n}(z)=\frac{1}{z} \sum\limits_{i=1}^{n} \theta_{i}\left(\frac{z g_{i}{ }^{\prime}}{g_{i}}-1\right)+1, 可得到以下推论:

    推论6    设i=1, 2, \cdots, n ; f_{i}, g_{i} ? H ;-1<A_{i}<B_{i} \leqslant 1; -1<C_{i}<D_{i} \leqslant 1 ; \sigma, \theta_{i} ? 和 \operatorname{Re} \sigma>0 。若 \frac{z f_{i}^{\prime}}{f_{i}} ? \mathcal{H}_{1}\left(A_{i}\right., \left.B_{i}\right), \frac{z g_{i}^{\prime}}{g_{i}} ? \mathcal{H}_{1}\left(C_{i}, D_{i}\right)

    \left|M_{n}\right| \leqslant \begin{cases}\operatorname{Re} \sigma & (0<\operatorname{Re} \sigma<1), \\ 1 & (\operatorname{Re} \sigma \geqslant 1),\end{cases}

    其中

    M_{n}=\sum\limits_{i=1}^{n}\left[\left(\frac{1-A_{i}}{1-B_{i}}+1\right)+\left|\theta_{i}\right|\left(\frac{1-C_{i}}{1-D_{i}}+1\right)\right],

    则由式(4)定义的算子J_{n, \theta_{i}}\left(f_{i}, g_{i}\right)(z) ? \mathcal{S}

  • [1]

    DUREN P L. Univalent functions[M]. New York: Springer, 1983.

    [2]

    STANKIEWICZ J, WANIURSKI J. Some classes of functions subordinate to linear transformation and their applications[J]. Annales Universitatis Mariae Curie-Sklodowska: Section A, 1974, 28(9): 85-94.

    [3]

    JANOWSKI W. Some extremal problems for certain families of analytic functions[J]. Annales Polonici Mathematici, 1973, 28(3): 297-326. doi: 10.4064/ap-28-3-297-326

    [4] 李书海, 汤获, 马丽娜, 等. 与条形区域有关的解析函数新子类[J]. 数学物理学报, 2015, 35A(5): 970-986. https://www.cnki.com.cn/Article/CJFDTOTAL-SXWX201505013.htm

    LI S H, TANG H, MA L N, et al. A new subclass of analytic functions associated with the strip domains[J]. Acta Mathematica Scientia, 2015, 35A(5): 970-986. https://www.cnki.com.cn/Article/CJFDTOTAL-SXWX201505013.htm

    [5]

    PESCAR V. A new generalization of Ahlfors's and Becker's criterion of univalence[J]. Bulletin of Malaysian Mathematics Sciences Society, 1996, 19(2): 53-54.

    [6]

    BREAZ D, BREAZ N, SRIVASTAVA H M. An extension of the univalent condition for a family of integral operators[J]. Applied Mathematics Letters, 2009, 22(1): 41-44. doi: 10.1016/j.aml.2007.11.008

    [7]

    BREAZ D, TOMA A. The univalence conditions for a general integral operator[J]. Applied Mathematics Letters, 2011(24): 416-419.

    [8]

    DENIZ E, ORHAN H, SRIVASTAVA H M. Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions[J]. Taiwanese Journal of Mathematics, 2011(15): 883-917.

    [9]

    STANCIU L F, BREAZ D, SRIVASTAVA H M. Some criteria for univalence of a certain integral operator[J]. Novi Sad Journal of Mathematics, 2013, 43(2): 51-57.

    [10]

    FRASIN B A. Univalency of a nonlinear integral operator of analytic functions[J]. Journal of Mathematical Inequalities, 2015, 9(3): 763-771.

    [11]

    OPREA A, BREAZ D, SRIVASTAVA H M. Univalence conditions for a new family of integral operators[J]. Filomat, 2016, 30(5): 1243-1251. doi: 10.2298/FIL1605243O

    [12]

    XIONG L P. Properties of certain nonlinear integral operator associated with Janowski Starlike and convex functions[J]. Journal of Mathematical Research with Applications, 2016, 36(4): 432-440.

    [13]

    NAJAFZADEH S, EBADIAN A, RAHMATAN H. Univalency conditions for a new integral operator[J]. Journal of Computer Science and Applied Mathematics, 2015, 1(2): 35-37. doi: 10.37418/jcsam.1.2.1

    [14] 马致远, 熊良鹏. 扩充非线性积分算子的一些结果[J]. 华中师范大学学报(自然科学版), 2016, 50(1): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201601006.htm

    MA Z Y, XIONG L P. Some results for general nonlinear integral operator of functions[J]. Journal of Central China Normal University(Natural Sciences), 2016, 50(1): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201601006.htm

    [15]

    PESCAR V, SASU A. On univalence of an integral operator[J]. Bulletin of the Transilvania University of Brasov, 2020, 13(62): 661-666.

    [16]

    ELHADDAD S, ALDWEBY H, DARUS M. Univalence of new general integral operator defined by the ruscheweyh type q-difference operator[J]. European Journal of Pure and Applied Mathematics, 2020, 13(4): 861-872. doi: 10.29020/nybg.ejpam.v13i4.3817

    [17]

    PARK J H, SRIVASTAVA H M, CHO N E. Univalence and convexity conditions for certain integral operators associated with the lommel function of the first kind[J]. AIMS Mathematics, 2021, 6(10): 11380-11402. doi: 10.3934/math.2021660

    [18]

    RAZA M, MALIK S N, XIN Q, et al. On kudriasov conditions for univalence of integral operators defined by generalized bessel functions[J]. Mathematics, 2022, 10(9): 1-18.

    [19]

    SRIVASTAVA H M, ALAVI R, SAEID S, et al. New criteria for starlikness and convexity of a certain family of integral operators[J]. Mathematics, 2023, 11(18): 1-20.

    [20]

    PARVATHAM R, SHANMUGHAM T N. On analytic functions with reference to an integral operator[J]. Bulletin of the Australian Mathematical Society, 1983, 28(2): 207-215. doi: 10.1017/S0004972700020888

    [21]

    RAINGARAJAN M R. On the radius of starlikeness and convexity of certain classes of analytic functions[J]. Annales Polonici Mathematic, 1985, 45(2): 125-135. doi: 10.4064/ap-45-2-125-135

计量
  • 文章访问数:  52
  • HTML全文浏览量:  18
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 网络出版日期:  2024-04-29
  • 刊出日期:  2024-02-24

目录

/

返回文章
返回