钙铜复合吸收剂的一步法合成及其CO2捕集性能

陈健, 李友势, 黄昌强, 薛元朝, 孙吴皓, 汤贺丹, 戴永鑫, 姚宇诚, 李铭迪, 胡焰彬, 孙世超

陈健, 李友势, 黄昌强, 薛元朝, 孙吴皓, 汤贺丹, 戴永鑫, 姚宇诚, 李铭迪, 胡焰彬, 孙世超. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057
引用本文: 陈健, 李友势, 黄昌强, 薛元朝, 孙吴皓, 汤贺丹, 戴永鑫, 姚宇诚, 李铭迪, 胡焰彬, 孙世超. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057
CHEN Jian, LI Youshi, HUANG Changqiang, XUE Yuanchao, SUN Wuhao, TANG Hedan, DAI Yongxin, YAO Yuchen, LI Mingdi, HU Yanbin, SUN Shichao. Investigation on One-step Synthesis of CaO/CuO Composite Pellets and their CO2 Capture Performance[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057
Citation: CHEN Jian, LI Youshi, HUANG Changqiang, XUE Yuanchao, SUN Wuhao, TANG Hedan, DAI Yongxin, YAO Yuchen, LI Mingdi, HU Yanbin, SUN Shichao. Investigation on One-step Synthesis of CaO/CuO Composite Pellets and their CO2 Capture Performance[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057

钙铜复合吸收剂的一步法合成及其CO2捕集性能

基金项目: 

国家自然科学基金项目 52206230

江苏省高等学校自然科学研究面上项目 22KJB480001

详细信息
    通讯作者:

    李友势, Email: lys25@cslg.edu.cn

  • 中图分类号: O611.6;TK16

Investigation on One-step Synthesis of CaO/CuO Composite Pellets and their CO2 Capture Performance

  • 摘要:

    采用一步法制备了钙铜复合吸收剂颗粒,研究了制备参数对钙铜复合吸收剂颗粒中钙铜物质的量之比的影响。结果表明:通过调节钙铜前驱体混合溶液中的钙铜物质的量之比和吸附时间,可以获得钙铜物质的量之比为1、元素均匀分布的钙铜复合吸收剂颗粒;在固定床反应器上开展了煅烧还原-氧化-碳酸化循环实验,发现钙铜复合吸收剂颗粒的氧化性能非常稳定,而CO2捕集性能较稳定,初始CO2吸附量(每克吸收剂吸附CO2的质量)为0.18 g/g,10次循环后CO2吸附量的保持率为56%。

    Abstract:

    Calcium-copper composite absorber particles(CaO/CuO) were prepared by a one-step synthesis method, and the influence of preparation parameters on the molar ratio of calcium to copper within these particles was investigated. The results indicate that CaO/CuO composite absorbent particles with a molar ratio of one and uniform elemental distribution can be obtained by adjusting the molar ratio of Ca to Cu in the precursor solution and optimizing the adsorption duration. The calcining/reducing-oxidizing-carbonating cycle experiments were carried out on a fixed-bed reactor, and the oxidation performance of the composite pellets is highly stable, while the CO2 capture performance is relatively consistent. The initial CO2 adsorption capacity, measured as the mass of CO2 adsorbed per gram of absorbent, is 0.18 g/g. After ten cycles, the composite pellets maintain 56% of their initial CO2 capture efficiency, demonstrating sustained and reliable performance.

  • 图  1   钙铜联合循环工艺示意图

    Figure  1.   Schematic of the combined Ca/Cu looping process

    图  2   钙铜复合物的XRD图谱

    Figure  2.   XRD pattern of the CaO/CuO composite

    图  3   钙铜复合物的SEM和EDS图

    Figure  3.   SEM and EDS images of the CaO/CuO composite

    图  4   钙铜复合物的氧化和CO2捕集性能

    Figure  4.   Oxidation and CO2 capture performance of the CaO/CuO composite

    图  5   10次重复循环反应后钙铜复合物的SEM图

    Figure  5.   SEM images of the CaO/CuO composite after ten repeated cycles

    表  1   钙铜复合颗粒的CO2捕集性能比较

    Table  1   Comparison of CO2 capture performance of calcium copper composite particles

    合成方法 测试条件 循环次数 CO2吸附量/(g·g-1)
    初始 最终
    机械造粒法[17] 设备:热重分析仪
    煅烧还原:875 ℃,10 min,CH4
    碳酸化:650 ℃,15 min,20% CO2
    16 0.06 0.02
    机械造粒法[23] 设备:固定床反应器
    煅烧/还原:850 ℃,15 min,合成气
    碳酸化:650 ℃,15 min,15% CO2
    12 0.11 0.07
    机械造粒法[24] 设备:热重分析仪
    煅烧还原:800 ℃,10 min,CH4
    碳酸化:650 ℃,12 min,20% CO2
    3 0.25 0.15
    一步法(本文) 设备:固定床反应器
    煅烧还原:850 ℃,12 min,50% H2
    碳酸化:650 ℃,15 min,15% CO2
    10 0.18 0.10
    下载: 导出CSV
  • [1] 马于杰, 葛以赵, 苏鹏, 等. LaAl0.5Ni0.5O3钙钛矿的制备及其对甲烷干重整的催化性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 53-61. doi: 10.6054/j.jscnun.2022045

    MA Y J, GE Y Z, SU P, et al. The preparation of LaAl0.5Ni0.5O3 perovskite and its catalytic performance in methane dry reforming[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(3): 53-61. doi: 10.6054/j.jscnun.2022045

    [2] 宋豫秦, 应验. 碳达峰与碳中和背景下蓝碳开发价值、理论与建议探讨[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 93-99. doi: 10.6054/j.jscnun.2022048

    SONG Y Q, YING Y. The value, theory and suggestion concerning blue carbon development against the background of carbon peak and carbon neutrality[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(3): 93-99. doi: 10.6054/j.jscnun.2022048

    [3] 卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041

    LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041

    [4] 徐运飞, 李英杰, 王涛, 等. MgO吸附剂捕集CO2的研究进展[J]. 洁净煤技术, 2021, 27(1): 125-134.

    XU Y F, LI Y J, WANG T, et al. Research progress on MgO sorbents for CO2 capture[J]. Clean Coal Technology, 2021, 27(1): 125-134.

    [5] 罗聪, 罗童, 徐勇庆, 等. 钙基吸附剂的CO2捕集及其热化学储能研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 101-109.

    LUO C, LUO T, XU Y Q, et al. Research progress of CO2 capture by calcium based adsorbent and thermochemical energy storage[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 101-109.

    [6] 许翠萍, 阮铖涛, 邢舟, 等. 金属硫化物在电催化二氧化碳还原反应中的应用[J]. 福建师范大学学报(自然科学版), 2023, 39(3): 15-27.

    XU C P, RUAN C T, XING Z, et al. Application of metal sulfides in electrocatalyzing carbon dioxide reduction reaction[J]. Journal of Fujian Normal Univerity (Natural Science Edition), 2023, 39(3): 15-27.

    [7]

    ABANADES J C, MURILLO R, FERNANDEZ J R, et al. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops[J]. Environmental Science & Technology, 2010, 44(17): 6901-6904.

    [8]

    MANOVIC V, ANTHONY E J. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials[J]. Environmental Science & Technology, 2011, 45(24): 10750-10756.

    [9]

    CHEN J, DUAN L B, SUN Z. Review on the development of sorbents for calcium looping[J]. Energy & Fuels, 2020, 34(7): 7806-7836.

    [10]

    OZCAN D C, MACCHI A, LU D Y, et al. Ca-Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes[J]. International Journal of Greenhouse Gas Control, 2015, 43: 198-212. doi: 10.1016/j.ijggc.2015.10.021

    [11] 陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043

    CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO Composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043

    [12]

    CHEN J, DUAN L B, MA Y X, et al. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: a state-of-the-art review[J]. Fuel, 2023, 334: 126630/1-13.

    [13]

    FERNÁNDEZ J R, ABANADES J C. Overview of the Ca-Cu looping process for hydrogen production and/or power generation[J]. Current Opinion in Chemical Engineering, 2017, 17: 1-8. doi: 10.1016/j.coche.2017.04.010

    [14]

    CHEN J, DUAN L B, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. doi: 10.1016/j.cej.2018.06.176

    [15]

    QIN C L, YIN J, LIU W Q, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12274-12281.

    [16]

    CHEN J, DONAT F, DUAN L B, et al. Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process[J]. Chemical Engineering Journal, 2021, 403: 126330/1-12.

    [17]

    RECIO A, LIEW S, LU D, et al. The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture[J]. Technologies, 2016, 4(2): 1-12.

    [18]

    CHEN J, DUAN L B, SHI T, et al. A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a template-free synthesis approach[J]. Journal of Materials Chemistry A, 2019, 7(37): 21096-21105. doi: 10.1039/C9TA04513A

    [19]

    KIERZKOWSKA A M, MVLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. doi: 10.1002/cplu.201200232

    [20]

    KIERZKOWSKA A M, MVLLER C R. Development of calcium-based, copper-functionalised CO2 sorbents to integrate chemical looping combustion into calcium looping[J]. Energy & Environmental Science, 2012, 5(3): 6061-6065.

    [21] 张振民, 陈健, 王研凯, 等. 惰性载体支撑钙铜复合吸收剂的碳酸化性能及其动力学分析[J]. 石油学报(石油加工), 2020, 36(6): 1389-1397.

    ZHANG Z M, CHEN J, WANG Y K, et al. Analysis of carbonation and kinetic performance of inert support-stabilized CaO/CuO composites[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1389-1397.

    [22]

    AGULHON P, MARKOVA V, ROBITZER M, et al. Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations[J]. Biomacromolecules, 2012, 13(6): 1899-1907.

    [23]

    RIDHA F N, LU D, MACCHI A, et al. Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor[J]. Fuel, 2015, 153: 202-209.

    [24]

    MANOVIC V, WU Y, HE I, et al. Core-in-shell CaO/CuO-based composite for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12384-12391.

  • 期刊类型引用(3)

    1. 刘婧怡,蒋雅萌,冯伟,郑凤,许新华. 自愈合离子凝胶的制备及传感测试. 大学化学. 2022(05): 304-310 . 百度学术
    2. 郭媛媛,蒋洪伟,袁冬,唐彪,周国富. 电润湿显示材料与器件技术研究进展. 液晶与显示. 2022(08): 925-941 . 百度学术
    3. 刘丽明,闫航瑞. 氯化钠液滴在特氟龙表面润湿行为的电控调节研究. 传感器与微系统. 2021(02): 38-40+43 . 百度学术

    其他类型引用(1)

图(5)  /  表(1)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  16
  • PDF下载量:  49
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-08-12
  • 网络出版日期:  2024-01-21
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回