Abstract:
A three-dimensional flower-like porous Ni-Cu-S electrode material was prepared on copper foil substrate by one-step hydrogen bubble template electrodeposition using copper sulfide with high conductivity as additive component and nickel sulfide with high theoretical specific capacity. This structure increases the specific surface area of the material, increases the active reaction site of the material, thus speeding up the charge transfer and improving the electrochemical performance of the electrode material. In the three-electrode system, the specific capacitance of Ni-Cu-S electrode material can reach 1.57 C/cm
2, and the rate performance is 80.2%. Asymmetric supercapacitor was prepared by using Ni-Cu-S electrode material (positive electrode) and activated carbon (AC) (negative electrode). The performance of the asymmetric supercapacitor was tested in two electrode systems. The specific capacitance was 0.91 C/cm
2, and the high energy density was 0.89 mWh/cm
2 at the power density of 5.32 mW/cm
2. After 7 000 charge-discharge cycles, the capacitance remained 89.7% of the initial value, indicating good cycle stability of the material. The result indicates that Ni-Cu-S is an electrode material for high performance supercapacitors.