Loading [MathJax]/extensions/TeX/boldsymbol.js

一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性

欧阳柏平, 侯春娟

欧阳柏平, 侯春娟. 一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 103-109. DOI: 10.6054/j.jscnun.2023041
引用本文: 欧阳柏平, 侯春娟. 一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 103-109. DOI: 10.6054/j.jscnun.2023041
OUYANG Baiping, HOU Chunjuan. Nonexistence of Global Solutions to a Class of Weakly Coupled Semilinear Double-Wave System with Nonlinear Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 103-109. DOI: 10.6054/j.jscnun.2023041
Citation: OUYANG Baiping, HOU Chunjuan. Nonexistence of Global Solutions to a Class of Weakly Coupled Semilinear Double-Wave System with Nonlinear Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 103-109. DOI: 10.6054/j.jscnun.2023041

一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性

基金项目: 

广东省基础与应用基础研究基金省市联合基金项目 2021A1515111048

广东省普通高校重点项目(自然科学) 2019KZDXM042

广州华商学院校内项目 2020HSDS01

详细信息
    通讯作者:

    欧阳柏平, Email: oytengfei79@tom.com

  • 中图分类号: O175.4

Nonexistence of Global Solutions to a Class of Weakly Coupled Semilinear Double-Wave System with Nonlinear Terms

  • 摘要: 考虑了一类非线性项的弱耦合半线性双波动系统在次临界情况下解的爆破问题:首先,引入若干时变泛函,结合微分不等式方法,得到了该泛函的迭代框架和第一下界;然后,运用迭代技巧和切片方法,证明了该双波动系统柯西问题解的爆破,并推出了其解的生命跨度上界。
    Abstract: Blow-up of solutions to a class of weakly coupled semilinear double-wave system with nonlinear terms in the subcritical case is considered. By introducing some time-dependent functional associated with differential inequality methods, an iteration frame and the first lower bound of solutions are obtained. Then, blow-up of solutions to the Cauchy problem is proved via the iteration technique and slicing methods. Meanwhile, the upper bound of the lifespan for solutions is derived.
  • 近几十年来, 有关非线性项下弱耦合半线性波动方程和波动系统柯西问题解的全局存在性及爆破问题成为了学者们关注的热点。部分学者[1-7]研究了以下二阶半线性波动系统解的爆破问题:

    {uttΔu=|v|p((x,t)Rn×(0,T)),vttΔv=|u|q((x,t)Rn×(0,T)),(u,ut,v,vt)(0,x)=ε(u0,u1,v0,v1)(x)(xRn),

    其中, qp>1,n1,ε>0,Δ是拉普拉斯算子。该二阶半线性波动系统的临界曲线为

    αW:=max{4+3q+p1pq1,4+3p+q1pq1}=n12

    αW<(n1)/2时, 在初始数据满足一定的约束条件下存在全局解; 当αW(n1)/2时, 其解爆破。

    CHEN和REISSIG[8]考虑了如下具有阻尼项的弱耦合半线性波动系统解的爆破问题:

    {uttΔu+ut=|v|p((x,t)Rn×(0,T)),vttΔv=|u|q((x,t)Rn×(0,T)),(u,ut,v,vt)(0,x)=ε(u0,u1,v0,v1)(x)(xRn),

    其中, qp>1,ε>0。该文应用迭代技巧推出了初始数据满足一定条件时解的爆破及其生命跨度估计。

    高阶半线性波动方程解的爆破已有很多研究成果[9-16], 如: CHEN和PALMIERI[9]讨论了以下半线性Moore-Gibson-Thompson (MGT) 方程解的柯西问题:

    {βuttt+uttΔuβΔut=|u|p((x,t)Rn×(0,T)),(u,ut,utt)(0,x)=ε(u0,u1,u2)(x)(xRn),

    其中, ε>0,p>1,βε>0。该文应用迭代方法和切片方法, 分别得到了在次临界、临界情况下解的全局非存在性和生命跨度估计。

    双波动模型是基本波动方程的一个推广。特别地, 如果将div算子作用于弹性波方程utta2Δu+ (b2a2)divu=0, 则可得到一类双波动方程。

    本文考虑如下具有非线性项的弱耦合半线性双波动系统柯西问题解的爆破现象:

    {(2tΔ)2u=|v|p((x,t)Rn×(0,T)),(2tΔ)2v=|u|q((x,t)Rn×(0,T)),(u,ut,utt,uttt,v,vt,vtt,vttt)(0,x)=ε(u0,u1,u2,u3,v0,v1,v2,v3)(x)(xRn), (1)

    其中, qp>1,ε>0,Δ是拉普拉斯算子, (2tΔ)2u= utttt2Δutt+Δ2u。 

    本文采用迭代思路和切片方法对问题(1) 进行探讨, 避开了由于无界乘子的引人而使得Kato引理难以应用的问题。首先, 构造若干能量泛函, 得到其迭代框架和第一下界; 然后, 运用迭代技巧推导出问题(1) 全局解的非存在性以及生命跨度估计。

    首先给出方程组(1) 的柯西问题弱解的定义:

    定义1  设(u0,u1,u2,u3,v0,v1,v2,v3) (H3(Rn)×H2(Rn)×H1(Rn)×L2(Rn))×(H3(Rn)× H2(Rn)×H1(Rn)×L2(Rn))。称(u,v)为问题(1) 在[0,T)上能量弱解, 如果

    uC([0,T),H3(Rn))C1([0,T),H2(Rn))C2([0,T),H1(Rn))C3([0,T),L2(Rn))Lqloc([0,T)×Rn),vC([0,T),H3(Rn))C1([0,T),H2(Rn))C2([0,T),H1(Rn))C3([0,T),L2(Rn)Lploc([0,T)×Rn)

    满足

    Rnuttt(t,x)φ(t,x)dxRnuttt(0,x)φ(0,x)dx    t0Rnuttt(s,x)φt(s,x)dxds+2t0Rn(utt(s,x)×    φ(s,x))dxds+t0Rnu(s,x)Δ2φ(s,x)dxds=    t0Rn|v(s,x)|pφ(s,x)dxds (2)

    Rnvttt(t,x)ψ(t,x)dxRnvttt(0,x)ψ(0,x)dx    t0Rnvttt(s,x)ψt(s,x)dxds+2t0Rn(vtt(s,x)×    ψ(s,x))dxds+t0Rnv(s,x)Δ2ψ(s,x)dxds=    t0Rn|u(s,x)|qψ(s,x)dxds, (3)

    其中, φ(t,x),ψ(t,x)C0([0,T)×Rn),t[0,T)

    对式(3) 和式(4) 应用分部积分, 可得

    Rnuttt(t,x)φ(t,x)dxRnutt(t,x)φt(t,x)dx+    Rnut(t,x)φtt(t,x)dxRnu(t,x)φttt(t,x)dx+    t0Rnu(s,x)φtttt(s,x)dxds2Rnut(t,x)Δφ(t,x)dx+    2Rnu(t,x)Δφt(t,x)dx2t0Rnu(s,x)Δφtt(s,x)dxds    t0RnΔu(s,x)φ(s,x)dxds=    t0Rn|v(s,x)|pφ(s,x)dxds+εRnu3(x)φ(0,x)dx    εRnu2(x)φt(0,x)dx+εRnu1(x)φtt(0,x)dx    εRnu0(x)φttt(0,x)dx2εRnu1(x)Δφ(0,x)dx+    2εRnu0(x)Δφt(0,x)dx (4)

    Rnvttt(t,x)ψ(t,x)dxRnvtt(t,x)ψt(t,x)dx+    Rnvt(t,x)ψtt(t,x)dxRnv(t,x)ψttt(t,x)dx+    t0Rnv(s,x)ψtttt(s,x)dxds2Rnvt(t,x)Δψ(t,x)dx+    2Rnv(t,x)Δψt(t,x)dx2t0Rnv(s,x)Δψtt(s,x)dxds    t0RnΔv(s,x)ψ(s,x)dxds=    t0Rn|u(s,x)|qψ(s,x)dxds+εRnv3(x)ψ(0,x)dx    εRnv2(x)ψt(0,x)dx+εRnv1(x)ψtt(0,x)dx    εRnv0(x)ψttt(0,x)dx2εRnv1(x)Δψ(0,x)dx+    2εRnv0(x)Δψt(0,x)dx (5)

    tT, 则(u,v)满足方程组(1) 给出的弱解的定义。

    下面给出本文定理证明所需引理。

    引理1[10]  函数{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x)}定义如下:

    \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x)=\left\{\begin{array}{l} \mathrm{e}^{x}+\mathrm{e}^{-x} \quad(n=1), \\ \int_{\mathbb{S}^{n-1}} \mathrm{e}^{x \cdot \omega} \mathrm{d} \sigma_{\omega} \quad(n \geqslant 2), \end{array}\right.

    其中, x \in \mathbb{R}^{n}, \mathbb{S}^{n-1}为n-1维球面。\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x)为正光滑函数, 且\Delta \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x)=\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x), \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \sim|x|^{-(n-1) / 2} \mathrm{e}^{|x|} \quad(|x| \rightarrow \infty)

    引理2[11]  函数\mathit{\boldsymbol{ \boldsymbol{\varPsi} }}的渐近性如下:

    \int_{B_{R+t}} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x)^{p^{\prime}} \mathrm{d} x \leqslant c_{1}(R+t)^{(n-1)\left(1-p^{\prime} / 2\right)}, (6)

    其中, c_{1}>0, \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}=\mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x)=\mathrm{e}^{-t} \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x), \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x)的定义见引理1, p^{\prime}=p(p-1), B_{R+t}表示以原点为中心R+t为半径的球。

    本文的主要结果如下:

    定理1  设p, q>1p, q<(n+4) /(n-4), 如果n>4, 则

    \max \left\{\frac{4+3 q+p^{-1}}{p q-1}, \frac{4+3 p+q^{-1}}{p q-1}\right\}>\frac{n-1}{2} 。

    \left(u_{0}, u_{1}, u_{2}, u_{3}, v_{0}, v_{1}, v_{2}, v_{3}\right) \in\left(H^{3}\left(\mathbb{R}^{n}\right) \times H^{2}\left(\mathbb{R}^{n}\right) \times\right. \left.H^{1}\left(\mathbb{R}^{n}\right) \times L^{2}\left(\mathbb{R}^{n}\right)\right)^{2}, 其中u_{i}, v_{i} \quad(i=0, 1, 2, 3)是不恒为0的具有非负紧支集的函数, 包含在半径为R的球B_{R}中。特别地, 假设u_{3}(x)+u_{2}(x)>u_{1}(x)+u_{0}(x), v_{3}(x)+v_{2}(x)>v_{1}(x)+v_{0}(x), 如果(u, v)是方程组(1) 的解, 其生命跨度T(\varepsilon)满足

    \operatorname{supp} u(t, \cdot), \operatorname{supp} v(t, \cdot) \subset B_{t+R} \quad(t \in(0, T)),

    则存在一个正常数\varepsilon_{0}, 使得当\varepsilon \in\left(0, \varepsilon_{0}\right]时, (u, v)在有限时间爆破,其生命跨度的上界估计为

    T(\varepsilon) \leqslant \widetilde{C} \varepsilon^{-\frac{1}{\max \left\{Y_{1}(n, p, q), Y_{2}(n, p, q)\right\}}, }

    其中, \widetilde{C}独立于\varepsilon, 且

    \begin{aligned} & Y_{1}(n, p, q)=\frac{4+3 q+p^{-1}}{p q-1}-\frac{n-1}{2}, \\ & Y_{2}(n, p, q)=\frac{4+3 p+q^{-1}}{p q-1}-\frac{n-1}{2} 。 \end{aligned}

    证明  定义如下泛函

    U(t)=\int_{\mathbb{R}^{n}} u(t, x) \mathrm{d} x, V(t)=\int_{\mathbb{R}^{n}} v(t, x) \mathrm{d} x 。 (7)

    由波动方程有限传播速度和定理条件, 可知当\left(u_{0}\right., \left.u_{1}, u_{2}, u_{3}, v_{0}, v_{1}, v_{2}, v_{3}\right) \in\left(H^{3}\left(\mathbb{R}^{n}\right) \times H^{2}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right) \times\right. \left.L^{2}\left(\mathbb{R}^{n}\right)\right)^{2}B_{R}中具有紧支集时, 问题(1) 的局部弱解属于其能量空间并且在B_{R+t}中具有紧支集。

    在式(4)、(5) 中, 选取\varphi \equiv 1\psi \equiv 1, \{(s, x) \in \left.[0, t] \times \mathbb{R}^{n}:|x| \leqslant R+s\right\}, 有

    \int_{\mathbb{R}^{n}} u_{t t t}(t, x) \mathrm{d} x-\int_{\mathbb{R}^{n}} u_{t t t}(0, x) \mathrm{d} x=\int_{0}^{t} \int_{\mathbb{R}^{n}}|v(s, x)|^{p} \mathrm{~d} x \mathrm{~d} s, (8)
    \int_{\mathbb{R}^{n}} v_{t t t}(t, x) \mathrm{d} x-\int_{\mathbb{R}^{n}} v_{t t t}(0, x) \mathrm{d} x=\int_{0}^{t} \int_{\mathbb{R}^{n}}|u(s, x)|^{q} \mathrm{~d} x \mathrm{~d} s 。 (9)

    结合式(7)~(9), 得到

    U^{\prime \prime \prime}(t)=U^{\prime \prime \prime}(0)+\int_0^t \int_{\mathbb{R}^n}|v(s, x)|^p \mathrm{~d} x \mathrm{~d} s, (10)
    V^{\prime \prime \prime}(t)=V^{\prime \prime \prime}(0)+\int_0^t \int_{\mathbb{R}^n}|u(s, x)|^q \mathrm{~d} x \mathrm{~d} s_{\circ} (11)

    对式(10)关于t积分3次, 可得

    \begin{gathered} U(t)=U(0)+U^{\prime}(0) t+\frac{1}{2} U^{\prime \prime}(0) t^2+\frac{1}{6} U^{\prime \prime \prime}(0) t^3+ \\ \ \ \ \ \ \int_0^t \int_0^s \int_0^\tau \int_0^\sigma \int_{\mathbb{R}^n}|v(\eta, x)|^p \mathrm{~d} x \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant 0 。 \end{gathered} (12)

    由Hölder不等式及\operatorname{supp} v(t, \cdot) \subset B_{t+R}(t \in(0, T)), 可推出

    \int_{\mathbb{R}^{n}}|v(\eta, x)|^{p} \mathrm{~d} x \geqslant C_{1}(R+\eta)^{-n(p-1)}(V(\eta))^{p}, (13)

    其中C_{1}>0

    将式(13)代入式(12), 可得

    \begin{aligned} U(t) & \geqslant \int_0^t \int_0^s \int_0^\tau \int_0^\sigma \int_{\mathbb{R}^n}|v(\eta, x)|^p \mathrm{~d} x \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant \\ & C_1 \int_0^t \int_0^s \int_0^\tau \int_0^\sigma(R+\eta)^{-n(p-1)}(V(\eta))^p \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s 。 \end{aligned} (14)

    同样, 对式(11) 在[0, t]上积分3次, 整理得到

    \begin{aligned} V(t) & \geqslant \int_0^t \int_0^s \int_0^\tau \int_0^\sigma \int_{\mathbb{R}^n}|u(\eta, x)|^q \mathrm{~d} x \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant \\ & C_2 \int_0^t \int_0^s \int_0^\tau \int_0^\sigma(R+\eta)^{-n(q-1)}(U(\eta))^q \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s, \end{aligned} (15)

    其中C_{2}>0

    式(14)、(15) 提供了迭代框架。下面推导UV的下界序列及其第一下界。由引理2, 有

    \left(\partial_{t}^{2}-\Delta\right)^{2} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}=0 \text { 。 }

    定义泛函U_{0}(t) 、V_{0}(t)为:

    \begin{aligned} & U_{0}(t)=\int_{\mathbb{R}^{n}} u(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x, \\ & V_{0}(t)=\int_{\mathbb{R}^{n}} v(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x 。 \end{aligned} (16)

    式(3) 中令\mathit{\boldsymbol{ \boldsymbol{\varPsi} }}=\varphi, 易得

    \int_{\mathbb{R}^{n}} u_{t t t}(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x-\int_{0}^{t} \int_{\mathbb{R}^{n}} u_{t t t}(s, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_{t}(s, x) \mathrm{d} x \mathrm{~d} s+\\ \ \ \ \ \ \ \ \ \ \ \ 2 \int_{0}^{t} \int_{\mathbb{R}^{n}} \nabla u_{t t}(s, x) \cdot \nabla \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(s, x) \mathrm{d} x \mathrm{~d} s+\\ \ \ \ \ \ \ \ \ \ \ \ \int_{0}^{t} \int_{\mathbb{R}^{n}} u(s, x) \Delta^{2} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(s, x) \mathrm{d} x \mathrm{~d} s=\\ \ \ \ \ \ \ \ \ \ \ \ \int_{0}^{t} \int_{\mathbb{R}^{n}}|v(s, x)|^{p} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(s, x) \mathrm{d} x \mathrm{~d} s+\\ \ \ \ \ \ \ \ \ \ \ \ \int_{\mathbb{R}^{n}} u_{t t t}(0, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(0, x) \mathrm{d} x, (17)

    其中, \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \in C_{0}^{\infty}\left([0, T) \times \mathbb{R}^{n}\right), t \in[0, T)

    对于式(17), 进一步由分部积分和\mathit{\boldsymbol{ \boldsymbol{\varPsi} }}的性质, 得到

    \int_{\mathbb{R}^{n}} u_{t t t}(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x+\int_{\mathbb{R}^{n}} u_{t t}(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x- \\ \ \ \ \ \ \ \ \ \int_{\mathbb{R}^{n}} u_{t}(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x-\int_{\mathbb{R}^{n}} u(t, x) \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(t, x) \mathrm{d} x= \\ \ \ \ \ \ \ \ \ \ \varepsilon I+\int_{0}^{t} \int_{\mathbb{R}^{n}}|v(s, x)|^{p} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(s, x) \mathrm{d} x \mathrm{~d} s, (18)

    其中

    \begin{aligned} & I=I\left[u_{0}, u_{1}, u_{2}, u_{3}\right]= \\ & \quad \int_{\mathbb{R}^{n}}\left(u_{3}(x)+u_{2}(x)-u_{1}(x)-u_{0}(x)\right) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x_{\circ} \end{aligned}

    结合式(16) 和式(18), 有

    \begin{aligned} & U_{0}^{\prime \prime \prime}(T)+4 U_{0}^{\prime \prime}(T)+4 U_{0}^{\prime}(T)= \\ & \ \ \ \ \ \quad \varepsilon I+\int_{0}^{t} \int_{\mathbb{R}^{n}}|v(s, x)|^{p} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(s, x) \mathrm{d} x \mathrm{~d} s \geqslant \varepsilon I_{\circ} \end{aligned}

    G(T)=U_{0}^{\prime \prime}(t)+2 U_{0}^{\prime}(t) , 有

    G^{\prime}(t)+2 G(t) \geqslant \varepsilon I_{\circ} (19)

    对式(19) 积分, 有

    G(t) \geqslant\left(G(0)-\frac{1}{2} \varepsilon I\right) \mathrm{e}^{-2 t}+\frac{1}{2} \varepsilon I, (20)

    从而可得

    U_{0}^{\prime \prime}(t)+2 U_{0}^{\prime}(t) \geqslant\left(G(0)-\frac{1}{2} \varepsilon I\right) \mathrm{e}^{-2 t}+\frac{1}{2} \varepsilon I_{\circ} (21)

    对式(21) 关于t积分2次, 得到

    U_{0}(T) \geqslant \int_{\mathbb{R}^{n}} u_{0}(x) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x+\\ \ \ \ \frac{\varepsilon}{4}\left(1-\mathrm{e}^{-2 t}\right) \int_{\mathbb{R}^{n}}\left(3 u_{1}(x)-2 u_{0}(x)-u_{3}(x)\right) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x+\\ \ \ \ \frac{\varepsilon}{4} t \int_{\mathbb{R}^{n}}\left(u_{3}(x)+u_{2}(x)-u_{1}(x)-u_{0}(x)\right) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x+\\ \ \ \ \frac{\varepsilon}{4} t \mathrm{e}^{-2 t} \int_{\mathbb{R}^{n}}\left(u_{3}(x)+u_{0}(x)-u_{1}(x)-u_{2}(x)\right) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x \geqslant\\ \ \ \ \int_{\mathbb{R}^{n}} u_{0}(x) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x+\frac{\varepsilon \delta}{4} \int_{\mathbb{R}^{n}}\left(2 u_{1}(x)-u_{0}(x)-u_{2}(x)\right) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x+\\ \ \ \ \frac{\varepsilon}{4} t \int_{\mathbb{R}^{n}}\left(u_{3}(x)+u_{2}(x)-u_{1}(x)-u_{0}(x)\right) \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(x) \mathrm{d} x \geqslant C_{0} \varepsilon,

    其中C_{0}>0

    类似地, 可得

    V_{0}(t) \geqslant \widetilde{C}_{0} \varepsilon, (23)

    其中\widetilde{C}_{0}>0

    由Hölder不等式、式(6)和式(23), 有

    \begin{aligned} & \int_{\mathbb{R}^{n}}|v(s, x)|^{p} \mathrm{~d} x \geqslant\\ & \ \ \ \ \ \ \left(\int_{\mathbb{R}^{n}}|v(s, x)| \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}(s, x) \mathrm{d} x\right)^{p}\left(\int_{B_{R+s}} \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}^{\frac{p}{p-1}}(s, x) \mathrm{d} x\right)^{-(p-1)} \geqslant \\ & \ \ \ \ \ \ c_{1}^{1-p} \widetilde{C}_{0}^{p} \varepsilon^{p}(R+s)^{(n-1)-(n-1) p / 2} 。 \end{aligned} (24)

    联立式(14) 和式(24), 可得

    U(t) \geqslant\\ \ \ \ \ \ \ \ \ c_{1}^{1-p} \widetilde{C}_{0}^{p} \varepsilon^{p} \int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau} \int_{0}^{\sigma}(R+\eta)^{(n-1)-(n-1) p / 2} \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant \\ \ \ \ \ \ \ \frac{c_{1}^{1-p} \widetilde{C}_{0}^{p} \varepsilon^{p}}{n(n+1)(n+2)(n+3)}(R+t)^{-(n-1) p / 2} t^{n+3} 。 (25)

    类似地, 由式(15) 和式(22), 有

    V(t) \geqslant\\ \ \ \ \ \ \ \ \ c_{1}^{1-q} C_{0}^{q} \varepsilon^{q} \int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau} \int_{0}^{\sigma}(R+\eta)^{(n-1)-(n-1) q / 2} \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant\\ \ \ \ \ \ \ \frac{c_{1}^{1-q} C_{0}^{q} \varepsilon^{q}}{n(n+1)(n+2)(n+3)}(R+t)^{-(n-1) q / 2} t^{n+3} \text { 。 } (26)

    D_{1}=\frac{c_{1}^{1-p} \widetilde{C}_{0}^{p} \varepsilon^{p}}{n(n+1)(n+2)(n+3)}, \alpha_{1}=\frac{(n-1) p}{2}, \beta_{1}=n+3, Q_{1}=\frac{c_{1}^{1-q} C_{0}^{q} \varepsilon^{q}}{n(n+1)(n+2)(n+3)}, a_{1}=\frac{(n-1) q}{2}, b_{1}=n+3。式(25) 和式(26) 可分别简写为

    U(t) \geqslant D_{1}(R+t)^{-\alpha_{1}} t^{\beta_{1}}, (27)
    V(t) \geqslant Q_{1}(R+t)^{-a_{1}} t^{b_{1}}。 (28)

    下面构造U(t)V(t)的迭代序列。具体地说, 设

    U(t) \geqslant D_{j}(R+t)^{-\alpha_{j}} t^{\beta_{j}}, (29)
    V(t) \geqslant Q_{j}(R+t)^{-a_{j}} t^{b_{j}}, (30)

    其中, \left\{D_{j}\right\}_{j \in \mathbb{N}} 、\left\{Q_{j}\right\}_{j \in \mathbb{N}} 、\left\{\alpha_{j}\right\}_{j \in \mathbb{N}} 、\left\{a_{j}\right\}_{j \in \mathbb{N}} 、\left\{\beta_{j}\right\}_{j \in \mathbb{N}} 、\left\{b_{j}\right\}_{j \in \mathbb{N}}均为非负实序列。

    由式(27) 和式(28) 可知, j=1时, 式(29) 和式(30) 成立。假设j>1时, 式(29)、(30) 成立, 下证式(29)、(30) 对j+1也成立。

    由式(14)、(15)、(29)、(30), 可得

    U(t) \geqslant C_{1} Q_{j}^{p} \int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau} \int_{0}^{\sigma}(R+\eta)^{-n(p-1)-p a_{j}} \eta^{p b_{j}} \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant \\ \ \ \ \ \ \frac{C_{1} Q_{j}^{p}}{\left(p b_{j}+1\right)\left(p b_{j}+2\right)\left(p b_{j}+3\right)\left(p b_{j}+4\right)}(R+t)^{-n(p-1)-p a_{j}} t^{p b_{j}+4}, (31)
    V(t) \geqslant C_{2} D_{j}^{q} \int_{0}^{t} \int_{0}^{s} \int_{0}^{\tau} \int_{0}^{\sigma}(R+\eta)^{-n(q-1)-q \alpha_{j}} \eta^{q \beta_{j}} \mathrm{~d} \eta \mathrm{d} \sigma \mathrm{d} \tau \mathrm{d} s \geqslant \\ \frac{C_{2} D_{j}^{q}}{\left(p \beta_{j}+1\right)\left(p \beta_{j}+2\right)\left(p \beta_{j}+3\right)\left(p \beta_{j}+4\right)}(R+t)^{-n(q-1)-q \alpha_{j}} t^{q \beta_{j}+4} \text { 。 } (32)

    \begin{gathered} D_{j+1}=\frac{C_{1} Q_{j}^{p}}{\left(p b_{j}+1\right)\left(p b_{j}+2\right)\left(p b_{j}+3\right)\left(p b_{j}+4\right)}, \\ \ \ \ \ \ \ \ \alpha_{j+1}=n(p-1)+p a_{j}, \beta_{j+1}=p b_{j}+4, \end{gathered} (33)
    Q_{j+1}=\frac{C_{2} D_{j}^{q}}{\left(p \beta_{j}+1\right)\left(p \beta_{j}+2\right)\left(p \beta_{j}+3\right)\left(p \beta_{j}+4\right)}, \\ \ \ \ \ \ \ \ \ \ \ \ a_{j+1}=n(q-1)+q \alpha_{j}, b_{j+1}=q \beta_{j}+4_{\circ} (34)

    于是, 由式(31)~(34) 可知式(29) 和式(30) 对j+1成立。

    下面对\alpha_{j} 、\beta_{j} 、a_{j} 、b_{j}进行估计。设j为奇正整数, 由式(33)、(34) 可得

    \begin{gathered} \alpha_{j}=n(p-1)+p\left(n(q-1)+q \alpha_{j-2}\right)=\cdots= \\ \left(n+\frac{(n-1) p}{2}\right)(p q)^{(j-1) / 2}-n, \\ a_{j}=n(q-1)+q n(p-1)+p q a_{j-2}=\cdots= \\ \left(n+\frac{(n-1) q}{2}\right)(p q)^{(j-1) / 2}-n_{\circ} \end{gathered} (35)

    同样可得

    \begin{aligned} \beta_{j}=4+4 p+p q \beta_{j-2}=\cdots=\left(\frac{4+4 p}{p q-1}+n+3\right)(p q)^{(j-1) / 2}-\frac{4+4 p}{p q-1} , \\ b_{j}=4+4 q+p q b_{j-2}=\cdots=\left(\frac{4+4 q}{p q-1}+n+3\right)(p q)^{(j-1) / 2}-\frac{4+4 q}{p q-1}。 \end{aligned} (36)

    j, j-1为偶正整数时,为正奇数, 故有

    \begin{aligned} & \beta_{j}=p b_{j-1}+4=q^{-1}\left(\frac{4+4 q}{p q-1}+n+3\right)(p q)^{j / 2}-\frac{4+4 p}{p q-1}, \\ & b_{j}=q \beta_{j-1}+4=p^{-1}\left(\frac{4+4 p}{p q-1}+n+3\right)(p q)^{j / 2}-\frac{4+4 q}{p q-1} 。 \end{aligned} (37)

    由式(36)、(37), 可知

    (1) 当j为奇正整数时,

    \beta_{j} \leqslant B_{0}(p q)^{(j-1) / 2}, b_{j} \leqslant \widetilde{B}_{0}(p q)^{(j-1) / 2} ;

    (2) 当j为偶正整数时,

    \beta_{j} \leqslant B_{0}(p q)^{j / 2}, b_{j} \leqslant \widetilde{B}_{0}(p q)^{j / 2},

    其中, B_{0}=B_{0}(n, p, q), \widetilde{B}_{0}=\widetilde{B}_{0}(n, p, q), 均为与j无关的正数。

    下面估计D_{j}Q_{j}。结合式(33) (37), 有

    D_{j}=\frac{C_{1} Q_{j-1}^{p}}{\left(p b_{j-1}+1\right)\left(p b_{j-1}+2\right)\left(p b_{j-1}+3\right)\left(p b_{j-1}+4\right)} \geqslant \\ \ \ \ \ \ \frac{C_{1} Q_{j-1}^{p}}{\beta_{j}^{4}} \geqslant C_{1} B_{0}^{-4} Q_{j-1}^{p}(p q)^{-2 j}, \\ Q_{j}=\frac{C_{2} D_{j-1}^{q}}{\left(p \beta_{j-1}+1\right)\left(p \beta_{j-1}+2\right)\left(p \beta_{j-1}+3\right)\left(p \beta_{j-1}+4\right)} \geqslant \\ \ \ \ \ \ \frac{C_{2} D_{j-1}^{q}}{b_{j}^{4}} \geqslant C_{2} \widetilde{B}_{0}^{-4} D_{j-1}^{q}(p q)^{-2 j} 。

    由此可得

    \begin{aligned} D_{j} \geqslant & C_{1} B_{0}^{-4} C_{2}^{p} \widetilde{B}_{0}^{-4 p} D_{j-2}^{p q}(p q)^{-2 p(j-1)-2 j}= \\ & E_{0} D_{j-2}^{p q}(p q)^{-2 p(j-1)-2 j}, \end{aligned} (38)
    \begin{aligned} Q_{j} \geqslant & C_{2} \widetilde{B}_{0}^{-4} C_{1}^{q} B_{0}^{-4 q} Q_{j-2}^{p q}(p q)^{-2 q(j-1)-2 j}= \\ & \widetilde{E}_{0} Q_{j-2}^{p q}(p q)^{-2 q(j-1)-2 j} \text { 。 } \end{aligned} (39)

    j为奇正整数时, 对式(38) 两边取对数, 由递推关系, 得到

    \log D_{j} \geqslant \log E_{0}+p q \log D_{j-2}-(2 p(j-1)+2 j) \log (p q) \geqslant \\ \ \ \ \ \ \ \ \ \ \ \cdots \geqslant(p q)^{\frac{j-1}{2}}\left[\frac{\log E_{0}}{p q-1}+\log D_{1}+\right. \\ \ \ \ \ \ \ \ \ \ \ \left.\frac{2 p(p q-1)-(2 p+2)(3 p q-1)}{(p q-1)^{2}} \log (p q)\right]-\\ \ \ \ \ \ \ \ \ \ \ \frac{\log E_{0}+2 p \log (p q)}{p q-1}+\frac{(2 p+2) \log (p q)}{(p q-1)^{2}} \times\\ \ \ \ \ \ \ \ \ \ \ [2 p q+(p q-1) j]。 (40)

    j_{0}为满足下式的最小正整数:

    j_{0} \geqslant \frac{\log E_{0}+2 p \log (p q)}{(2 p+2) \log (p q)}-\frac{2 p q}{p q-1},

    则式(40) 可化为

    \log D_{j} \geqslant\\ \ \ (p q)^{(j-1) / 2} \log \left(E_{0}^{1 /(p q-1)} D_{1}(p q)^{(2 p(p q-1)-(2 p+2)(3 p q-1)) /(p q-1)^{2}}\right)= \\ \ \ (p q)^{(j-1) / 2} \log \left(E_{1} \varepsilon^{p}\right), (41)

    其中, E_{1}=E_{1}(n, p, q), j \geqslant j_{0}

    由式(39), 类似可得

    \log Q_{j} \geqslant\\ \ \ (p q)^{(j-1) / 2} \log \left(\widetilde{E}_{0}^{1 /(p q-1)} Q_{1}(p q)^{(2 q(p q-1)-(2 q+2)(3 p q-1)) /(p q-1)^{2}}\right)= \\ \ \ (p q)^{(j-1) / 2} \log \left(\widetilde{E}_{1} \varepsilon^{q}\right), (42)

    其中, \widetilde{E}_{1}=\widetilde{E}_{1}(n, p, q) ; j \geqslant j_{1}, j_{1}为正整数, 且j_{1} \geqslant \frac{\log \widetilde{E}_{0}+2 q \log (p q)}{(2 q+2) \log (p q)}-\frac{2 p q}{p q-1}

    j为奇正整数且j \geqslant \max \left\{j_{0}, j_{1}\right\}时, 由式(29)、(35)、(36)、(41), 有

    U(t) \geqslant \exp \left((p q)^{(j-1) / 2} \log \left(E_{1} \varepsilon^{p}\right)\right) \times\\ (R+t)^{n-(n+(n-1) p / 2)(p q)^{(j-1) / 2}} t^{((4+4 p) /(p q-1)+n+3)(p q)^{(j-1) / 2-(4+4 p) /(p q-1)}=}\\ \exp \left((p q)^{(j-1) / 2}\left(\log \left(E_{1} \varepsilon^{p}\right)-\left(n+\frac{(n-1) p}{2}\right) \log (R+t)+\right.\right.\\ \left.\left.\left(\frac{4+4 p}{p q-1}+n+3\right) \log t\right)\right)(R+t)^{n} t^{-(4+4 p) /(p q-1)} 。

    t \geqslant R时, 有

    U(T) \geqslant \exp \left((p q)^{(j-1) / 2}\left(\log \left(E_{1} \varepsilon^{p} 2^{-(n+(n-1) p / 2)} \times\right.\right.\right.\\ \ \ \ \ \ \ \ \left.\left.\left.t^{(4+4 p) /(p q-1)+n+3-(n+(n-1) p / 2)}\right)\right)\right)(R+t)^{n} t^{-(4+4 p) /(p q-1)} 。 (43)

    式(43) 右边项指数函数中t的指数为

    \begin{aligned} & \frac{4+4 p}{p q-1}+n+3-\left(n+\frac{(n-1) p}{2}\right)=p\left(\frac{4+3 q+p^{-1}}{p q-1}-\frac{n-1}{2}\right)= \\ & \ \ \ \ \ \ \ \ \ \ p Y_{1}(n, p, q) \text { 。 } \end{aligned}

    Y_{1}(n, p, q)>0时, t的指数是正的。

    类似的推导, 联立式(30)、(35)、(36)、(42), 得到

    V(t) \geqslant \exp \left((p q)^{(j-1) / 2}\left(\log \left(\widetilde{E}_{1} \varepsilon^{q}\right)-\right.\right.\\ \left.\left.\left(n+\frac{(n-1) q}{2}\right) \log (R+t)+\left(\frac{4+4 q}{p q-1}+n+3\right) \log t\right)\right) \times\\ (R+t)^{n} t^{-(4+4 q) /(p q-1)} \geqslant \exp \left((p q)^{(j-1) / 2}\left(\log \left(\widetilde{E}_{1} \varepsilon^{q} 2^{-(n+(n-1) q / 2)} \times\right.\right.\right.\\ \left.\left.\left.t^{(4+4 q) /(p q-1)+n+3-(n+(n-1) q / 2)}\right)\right)\right)(R+t)^{n} t^{-(4+4 q) /(p q-1)}, (44)

    其中t \geqslant R

    此时, 式(44) 右边项指数函数中t的指数为

    \begin{aligned} & \frac{4+4 q}{p q-1}+n+3-\left(n+\frac{(n-1) q}{2}\right)=q\left(\frac{4+3 p+q^{-1}}{p q-1}-\frac{n-1}{2}\right)= \\ & \ \ \ \ \ \ \ \ \ q \Upsilon_{2}(n, p, q) \text {。} \end{aligned}

    Y_{2}(n, p, q)>0时, t的指数是正的。

    \varepsilon_{0}=\varepsilon_{0}\left(u_{0}, u_{1}, u_{2}, u_{3}, v_{0}, v_{1}, v_{2}, v_{3}, n, p, q, R\right)> 0, 使得

    \varepsilon_{0}^{-1 / Y_{1}(n, p, q)} \geqslant\left(E_{1} 2^{-(n+(n-1) p / 2)}\right)^{1 /\left(p Y_{1}(n, p, q)\right)} 。

    E_2=\left(E_1 2^{-(n+(n-1) p / 2)}\right)^{-1 /\left(p Y_1(n, p, q)\right)}。当\varepsilon \in(0, \left.\varepsilon_0\right]t>E_{2} \varepsilon^{-1 / Y_{1}(n, p, q)}时, 有t \geqslant R\log \left(E_{1} \varepsilon^{p} \times\right. \left.2^{-(n+(n-1) p / 2)} t^{p Y_{1}(n, p, q)}\right)>0

    式(43) 中, 对j \rightarrow \infty, 当\varepsilon \in\left(0, \varepsilon_{0}\right]t> E_{2} \varepsilon^{-1 / Y_{1}}(n, p, q)时, 可得U(t)的下界爆破。

    同理, 当Y_{2}(n, p, q)>0时, 对于合适的\varepsilon_{0}= \varepsilon_{0}\left(u_{0}, u_{1}, u_{2}, u_{3}, v_{0}, v_{1}, v_{2}, v_{3}, n, p, q, R\right)>0, 有

    \varepsilon_{0}^{-1 / Y_{2}(n, p, q)} \geqslant\left(\widetilde{E}_{1} 2^{-(n+(n-1) q / 2)}\right)^{1 /\left(q Y_{2}(n, p, q)\right)} 。

    因而, 当\varepsilon \in\left(0, \varepsilon_{0}\right] 、t>\widetilde{E}_{2} \varepsilon^{-1 / Y_{2}(n, p, q)}\widetilde{E}_{2}= \left(\widetilde{E}_{1} 2^{-(n+(n-1) q / 2)}\right)^{-1 /\left(q Y_{2}(n, p, q)\right)}时, 令j \rightarrow \infty, 可推出V(t)的下界爆破。

    由以上讨论可知, 问题(1) 的全局解不存在, 进一步可得局部解(u, v)的生命跨度估计为

    T(\varepsilon) \leqslant \widetilde{C} \varepsilon^{-\frac{1}{\max \left\{Y_{1}(n, p, q), Y_{2}(n, p, q)\right\}}, }

    其中\widetilde{C}为正常数。证毕。

  • [1]

    AGEMI R, KUROKAWA Y, TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1):87-133. doi: 10.1006/jdeq.2000.3766

    [2]

    DEL SANTO D. Global existence and blow-up for a hyperbolic system in three space dimensions[J]. Rendiconti dell'Istituto di Matematica dell'Universita di Trieste, 1997, 29(1/2):115-140.

    [3]

    DEL SANTO D, MITIDIERI E. Blow-up of solutions of a hyperbolic system:the critical case[J]. Differential Equa-tions, 1998, 34(9):1157-1163.

    [4]

    GEORGIEV V, TAKAMURA H, ZHOU Y. The lifespan of solutions to nonlinear systems of a high dimensional wave equation[J]. Nonlinear Analysis, 2006, 64(10):2215-2250. doi: 10.1016/j.na.2005.08.012

    [5]

    KUROKAWA Y. The lifespan of radially symmetric solutions to nonlinear systems of odd dimensional wave equations[J]. Tsukuba Journal of Mathematics, 2005, 60(7):1239-1275.

    [6]

    KUROKAWA Y, TAKAMURA H. A weighted pointwise estimate for two dimensional wave equations and its applications to nonlinear systems[J]. Tsukuba Journal of Mathematics, 2003, 27(2):417-448.

    [7]

    KUROKAWA Y, TAKAMURA H, WAKASA K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions[J]. Differential Integral Equations, 2012, 25(3/4):363-382.

    [8]

    CHEN W H, REISSIG M. Blow-up of solutions to Nakao's problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275:733-756. doi: 10.1016/j.jde.2020.11.009

    [9]

    CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete & Continuous Dynamical Systems, 2020, 40(9):5513-5540.

    [10]

    YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2):361-374. doi: 10.1016/j.jfa.2005.03.012

    [11]

    LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-depen-dent damping related to Glassey's conjecture[J]. Diffe-rential Integral Equations, 2019, 32(1/2):37-48.

    [12] 高云龙, 林荣瑞, 佘连兵, 等. 带有强阻尼时滞项的m-Laplacian型波方程解的爆破[J]. 华南师范大学学报(自然科学版), 2021, 53(1):94-99. doi: 10.6054/j.jscnun.2021015

    GAO Y L, LIN R R, SHE L B, et al. Blow-up of solutions to the m-laplacian type wave equation with strong delay terms[J]. Journal of South China Normal University(Na-tural Science Edition), 2021, 53(1):94-99. doi: 10.6054/j.jscnun.2021015

    [13] 欧阳柏平, 肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5):1372-1381. doi: 10.3969/j.issn.1003-3998.2021.05.011

    OUYANG B P, XIAO S Z. Nonexistence of global solutions for a semilinear double-wave equation with a nonli-near memory term[J]. Acta Mathematica Scientia, 2021, 41(5):1372-1381. doi: 10.3969/j.issn.1003-3998.2021.05.011

    [14] 欧阳柏平, 肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 山东大学学报(理学版), 2021, 56(9):59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202109008.htm

    OUYANG B P, XIAO S Z. Global nonexistence of solutions to a class of semilinear double-wave equations with space-dependent coefficients on the nonlinearity[J]. Journal of Shandong University(Natural Science), 2021, 56(9):59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202109008.htm

    [15]

    CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202:112160/1-23.

    [16]

    CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2):67/1-21.

计量
  • 文章访问数:  82
  • HTML全文浏览量:  10
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2023-06-24

目录

/

返回文章
返回