留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈掺杂磷酸银/卟啉复合光催化剂降解螺旋霉素的研究

张延霖 范燕平 高欣 牛静

张延霖, 范燕平, 高欣, 牛静. 铈掺杂磷酸银/卟啉复合光催化剂降解螺旋霉素的研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 64-73. doi: 10.6054/j.jscnun.2023037
引用本文: 张延霖, 范燕平, 高欣, 牛静. 铈掺杂磷酸银/卟啉复合光催化剂降解螺旋霉素的研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 64-73. doi: 10.6054/j.jscnun.2023037
ZHANG Yanlin, FAN Yanping, GAO Xin, NIU Jing. The Research on the Degradation of Spiramycin by Cerium-doped Silver Phosphate/Porphyrin Composite Photocatalyst[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 64-73. doi: 10.6054/j.jscnun.2023037
Citation: ZHANG Yanlin, FAN Yanping, GAO Xin, NIU Jing. The Research on the Degradation of Spiramycin by Cerium-doped Silver Phosphate/Porphyrin Composite Photocatalyst[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 64-73. doi: 10.6054/j.jscnun.2023037

铈掺杂磷酸银/卟啉复合光催化剂降解螺旋霉素的研究

doi: 10.6054/j.jscnun.2023037
基金项目: 

国家自然科学基金项目 51578249

广东省自然科学基金项目 2022A1515011256

详细信息
    通讯作者:

    张延霖, Email: zhangyl@scnu.edu.cn

  • 中图分类号: O626.13

The Research on the Degradation of Spiramycin by Cerium-doped Silver Phosphate/Porphyrin Composite Photocatalyst

  • 摘要: 通过与5, 10, 15, 20-四(4-羧基苯基)卟啉(TCPP)复合,构筑了Ce-Ag3PO4/TCPP异质结复合催化剂,研究其对螺旋霉素(SPM)的催化降解性能。采用SEM、XRD、XPS、UV-Vis DRS和FTIR等方法表征和剖析催化剂材料的微观化学结构、化学组成及光化学性能,并进一步阐明光催化降解SPM的反应机理。Ce-Ag3PO4/TCPP光催化剂在可见光照射6 h对SPM的降解率为87.7%,降解速率常数是纯Ag3PO4的5.8倍。光电化学测量(光电流响应、电化学阻抗)、ESR测试、自由基捕获和PL光谱分析结果表明:铈离子(Ce3+)的掺杂,可有效增大催化剂的比表面积,减少电子-空穴对的复合;引入TCPP能加速电子转移,增强光吸收性能,从而提高光催化活性。这种掺杂复合催化剂为高效光降解SPM提供了一种简捷和高效的途径。
  • 图  1  不同催化剂的表征

    Figure  1.  The characterization of different catalysts

    图  2  样品的SEM图

    Figure  2.  The SEM images of samples

    图  3  Ce-Ag3PO4和Ce-Ag3PO4/TCPP的XPS谱

    Figure  3.  The XPS spectra of Ce-Ag3PO4 and Ce-Ag3PO4/TCPP

    图  4  Ag3PO4、Ce-Ag3PO4、TCPP和Ce-Ag3PO4/TCPP的红外光谱

    Figure  4.  The FTIR spectra of Ag3PO4, Ce-Ag3PO4, TCPP, and Ce-Ag3PO4/TCPP

    图  5  不同样品的UV-Vis DRS谱

    Figure  5.  The UV-Vis DRS spectra of different samples

    图  6  催化剂的荧光发射光谱

    Figure  6.  The fluorescence emission spectra of catalysts

    图  7  SPM的光催化降解曲线

    Figure  7.  The curves of photocatalytic degradation for SPM

    图  8  不同催化剂降解SPM的TOC去除率

    Figure  8.  The TOC degradation removal rate of SPM with different catalysts

    图  9  Ag3PO4和Ce-Ag3PO4/TCPP在可见光下降解SPM的循环性能

    Figure  9.  The recyclability performance of photocatalytic degradation of SPM by Ag3PO4 and Ce-Ag3PO4/TCPP under visible light irradiation

    图  10  Ce-Ag3PO4/TCPP在可见光下降解SPM过程中的自由基捕获曲线

    Figure  10.  The curves of photogenerated reactive species trap of SPM degradation by Ce-Ag3PO4/TCPP under visible light

    图  11  可见光照射前后Ce-Ag3PO4和Ce-Ag3PO4/TCPP的ESR波谱

    Figure  11.  The ESR spectra of Ce-Ag3PO4 and Ce-Ag3PO4/TCPP before and after visible light irradiation

    图  12  光催化剂的光电转化性能

    Figure  12.  The photoelectric conversion performance of photocatalysts

    图  13  可见光催化降解机制

    Figure  13.  The mechanism of photo-degradation under visible light irradiation

  • [1] 常海莎, 闫豫君, 鲁建江, 等. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806019.htm

    CHANG H S, YAN Y J, LU J J, et al. Photodegradation of spiramycin in aqueous solution[J]. Environmental Chemistry, 2018, 37(6): 1343-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806019.htm
    [2] 魏晓东, 刘叶新, 周志洪, 等. 广州典型排放源废水中抗生素的污染特征和去除效果[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 11-20. doi: 10.6054/j.jscnun.2018010

    WEI X D, LIU Y X, ZHOU Z H, et al. Occurrence and removal of antibiotics from wastewater of typical emission sources in Guangzhou, China[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(1): 11-20. doi: 10.6054/j.jscnun.2018010
    [3] ZHANG L W, ZHU Y F. A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts[J]. Catalysis Science & Technology, 2012, 2(4): 694-706.
    [4] BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133(17): 6490-6492. doi: 10.1021/ja2002132
    [5] YI Z G, YE J H, KIKUGAWA N K, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials, 2010, 9(7): 559-564. doi: 10.1038/nmat2780
    [6] 刘一鸣, 张曦, 陈芳艳, 等. Ag3PO4/Bi2O3异质结光催化剂的制备及其光催化性能研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(5): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201905014.htm

    LIU Y M, ZHANG X, CHEN F Y, et al. Preparation and photocatalytic activity of heterojunction-structured photocatalysts Ag3PO4/Bi2O3[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2019, 33(5): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201905014.htm
    [7] 郭玉玮, 刘旭东, 赵建军, 等. 原位化学沉积法制备AgBr/Ag3PO4光催化剂及其催化性能[J]. 石油学报(石油加工), 2020, 36(3): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG202003008.htm

    GUO Y W, LIU X D, ZHAO J J, et al. Preparation of AgBr/Ag3PO4 composite photocatalyst by in-situ chemical deposition and its photocatalytic performance[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG202003008.htm
    [8] TUDISCO C, PULVIRENTI L, COOL P, et al. Porphyrin functionalized bismuth ferrite for enhanced solar light photocatalysis[J]. Dalton Transactions, 2020, 49(25): 8652-8660. doi: 10.1039/C9DT04514G
    [9] HUANG Y, ZHAO P, MIAO H C, et al. Organic-inorganic TCPP/BiOCl hybrids with accelerated interfacial charge separation for boosted photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126367/1-12.
    [10] MARZIEH Y B, BAHRAM B, SOLMAZ Z. Synthesis, characterization, and design of a photocatalyst based on BiOBr nanoplates and tin porphyrin with enhanced visible light photocatalytic activity[J]. Research on Chemical Intermediates, 2020, 46(1): 197-213. doi: 10.1007/s11164-019-03943-9
    [11] 袁潮苇. La掺杂光催化剂的制备及净化空气中NO的反应机理研究[D]. 重庆: 重庆工商大学, 2021.

    YUAN C W. Investigation ofphotocatalytic no oxidation and reaction mechanism via La doping in photocatalyst[D]. Chongqing: Chongqing Technology and Business University, 2021.
    [12] ZHANG Y, SUN A, SUONAN Z, et al. Effect of rare-earth (Sm, Ce, and La) ions doping on the lattice structure and magnetic properties of Zn-Ba-Co ferrites by sol-gel auto-combustion method[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16505-16518. doi: 10.1007/s10854-021-06207-8
    [13] GUO Q, LI H, ZHANG Q, et al. Fabrication, characterization and mechanism of a novel Z-scheme Ag3PO4/NG/Polyimide composite photocatalyst for microcystin-LR degradation[J]. Applied Catalysis B: Environmental, 2018, 229: 192-203. doi: 10.1016/j.apcatb.2018.02.023
    [14] XU H, WANG C, SONG Y, et al. CNT/Ag3PO4 composites with highly enhanced visible light photocatalytic activity and stability[J]. Chemical Engineering Journal, 2014, 241(4): 35-42.
    [15] BORJIGIN B, DING L, LI H Q, et al. A solar light-induced photo-thermal catalytic decontamination of gaseous benzene by using Ag/Ag3PO4/CeO2 heterojunction[J]. Chemical Engineering Journal, 2020, 402: 126070/1-14.
    [16] GAO H Y, WANG J Y, JIA M Y, et al. Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2[J]. Chemical Engineering Journal, 2019, 34: 684-693.
    [17] 李德芝. 金属卟啉框架、铜/碳材料的合成及性质研究[D]. 大连: 大连理工大学, 2020.

    LI D Z. Synthesis of metal-porphyrin framework and Cu/C composites for their photothermal and electrocatalytic properties[D]. Dalian: Dalian University of Technology, 2020.
    [18] KOBAYASHI T, KUROKAWA F, UYEDA N. The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines[J]. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 1970, 26(6): 1305-1311. doi: 10.1016/0584-8539(70)80036-8
    [19] 曾锦萍, 袁晓玲, 邓记华. 若干5, 10, 15, 20-四(4-羧基苯基)卟啉金属配合物的合成与表征[J]. 宜春学院学报, 2010, 32(4): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004005.htm

    ZENG J P, YUAN X L, DENG J H. Synthesis and characterization of some metallic(Ⅱ) complexes with 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin ligand[J]. Journal of Yichun College, 2010, 32(4): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004005.htm
    [20] LIN P Y, SHEN J, PRASAD C, et al. The synergetic effect of carbon nanotubes and MoS2 as co-catalysts for enhancing the photocatalytic oxygen evolution of Ag3PO4[J]. Ceramics International, 2019, 45(17): 21120-21126. doi: 10.1016/j.ceramint.2019.07.088
    [21] 李向源. 基于5, 10, 15, 20-四(4-羧基苯基)卟啉桥联配体的纳米MOFs的合成及性能研究[D]. 济南: 山东师范大学, 2018.

    LI X Y. Synthesis and properties of nano MOFs based on 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin bridging ligand[D]. Jianan: Shandong Normal University, 2018.
    [22] 梅光泉, 袁晓玲, 曾锦萍. 5, 10, 15, 20-四(4-羧基苯基)卟啉及其钯(Ⅱ)配合物的合成与表征[J]. 化学试剂, 2008, 11: 809-812;815. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201104005.htm

    MEI G Q, YUAN X L, ZENG J P. Study on simultaneous determination of pyrocatechol, resorcinol and hydroquinone by supporting vector regression robust modeling[J]. Chemical Reagents, 2008, 11: 809-812;815. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201104005.htm
    [23] 曾锦萍, 梅光泉, 刘万云, 等. 5, 10, 15, 20-四(4-羧基苯基)卟啉铂(Ⅱ)配合物的合成与热谱研究[J]. 宜春学院学报, 2009, 31(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004006.htm

    ZENG J P, MEI G Q, LIU W Y. Study on synthesis and thermograms of platinum (Ⅱ) complex with 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin ligand[J]. Journal of Yichun College, 2009, 31(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004006.htm
    [24] CHEN L, MA W, DAI J D, et al. Facile synthesis of highly efficient graphitic-C3N4/ZnFe2O4 heterostructures enhanced visible-light photocatalysis for spiramycin degradation[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2016, 328: 24-32. doi: 10.1016/j.jphotochem.2016.04.026
    [25] CHICHE D, SCHWEITZER J M. Investigation of competitive COS and HCN hydrolysis reactions upon an industrial catalyst: Langmuir-Hinshelwood kinetics modeling[J]. Applied Catalysis B: Environmental, 2017, 205: 189-200. doi: 10.1016/j.apcatb.2016.12.002
    [26] CHEN S F, LEI J, TANG W M, et al. Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42(30): 10759-10768. doi: 10.1039/c3dt50699a
    [27] GUO X Y, LI X Q, QIN L X, et al. A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2019, 243: 1-9. doi: 10.1016/j.apcatb.2018.10.030
    [28] CHEN C, MA W, ZHAO J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39: 4206-4219. doi: 10.1039/b921692h
    [29] XU D F, CHENG B, CAO S W, et al. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation[J]. Applied Catalysis B: Environmental, 2015, 164(5): 380-388.
    [30] CHEN F, YANG Q, LI X M, et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 200: 330-334.
  • 加载中
图(13)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回