器皿材料对水中全氟化合物的吸附特征研究

李偲琳, 杨愿愿, 刘思思, 黄岳锐, 赵建亮, 应光国, 陈长二

李偲琳, 杨愿愿, 刘思思, 黄岳锐, 赵建亮, 应光国, 陈长二. 器皿材料对水中全氟化合物的吸附特征研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 46-54. DOI: 10.6054/j.jscnun.2023035
引用本文: 李偲琳, 杨愿愿, 刘思思, 黄岳锐, 赵建亮, 应光国, 陈长二. 器皿材料对水中全氟化合物的吸附特征研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 46-54. DOI: 10.6054/j.jscnun.2023035
LI Cailin, YANG Yuanyuan, LIU Sisi, HUANG Yuerui, ZHAO JianLiang, YING Guangguo, CHEN Chang'er. Adsorption of Perfluoroalkyl Substances in Aqueous Solution by Containers Made from Different Materials[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 46-54. DOI: 10.6054/j.jscnun.2023035
Citation: LI Cailin, YANG Yuanyuan, LIU Sisi, HUANG Yuerui, ZHAO JianLiang, YING Guangguo, CHEN Chang'er. Adsorption of Perfluoroalkyl Substances in Aqueous Solution by Containers Made from Different Materials[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 46-54. DOI: 10.6054/j.jscnun.2023035

器皿材料对水中全氟化合物的吸附特征研究

基金项目: 

国家自然科学基金项目 21806042

广州市科技创新项目 201904010291

详细信息
    通讯作者:

    陈长二,Email: changer.chen@m.scnu.edu.cn

  • 中图分类号: X830.5

Adsorption of Perfluoroalkyl Substances in Aqueous Solution by Containers Made from Different Materials

  • 摘要: 全氟化合物(PFAS)因其理化性质容易吸附到固定表面,从而造成不可忽视的测量误差。研究10种PFAS(C4~C10)在7种常用的不同材质(不锈钢(Stainless steel, SS)、氧化铝(Alumina)、玻璃(Glass)、陶瓷(Ceramic)、聚苯乙烯(Polystyrene, PS)、聚丙烯(Polypropylene, PP)、聚乙烯(Polyethene, PE))容器上的吸附损失情况。结果表明:3种长链PFAS(PFOS、PFNA和PFDA)在氧化铝和PP材质容器上具有显著吸附,其在PP材料中至少7 d内可被持续累积吸附,其他材质容器对PFAS无显著吸附。不同材质容器对短链PFAS(链长 < C7)的吸附率在5 μg/L和50 μg/L条件下不显著(P>0.05),而对长链PFAS(链长≥C7)呈现显著吸附(P < 0.05)且具有浓度依赖性, 即溶液浓度越低吸附率越高。吸附机理可能涉及疏水相互作用和静电相互作用(特别是在氧化铝表面)。PFAS在不同材质容器表面的吸附随碳链长度和lg Kow的增加而增大。这些结果表明常用的PP材质容器并不适合保存环境水样品,特别是涉及长链PFAS的相关研究。本研究结果可为PFAS相关研究中实验容器的选择提供重要参考,在开展PFAS的相关研究中有必要考虑实验容器对PFAS的吸附损失。
    Abstract: Perfluoroalkyl substances (PFAS) have been demonstrated to be easily adsorbed on surfaces, which may result in unneglectable measurement error. The adsorption of 10 PFAS with carbon chain lengths varying from 4 to 10 onto 7 types of containers, i.e., stainless steel (SS), alumina, glass, ceramic, polystyrene (PP), polypropylene (PS), and polyethylene (PE), was investigated. The results showed that alumina and PP containers exhibited the strongest adsorption for PFAS but only for longer chain length ones (PFOS, PFNA and PFDA), and the PP containers can continuously accumulate them for at least 7 days; while no significant adsorption was observed for PS and PE containers, suggesting that they can be served as the suitable experimental materials for PFAS. Furthermore, the short-chain PFAS (chain length <C7) had no significant adsorption on container surfaces (P>0.05), regardless of the solution concentrations investigated (5 and 50 g/L), whereas the long-chain PFAS (chain length C7) showed significantly adsorption at the lower experiment concentration (P < 0.05). The underlying adsorption mechanism might be hydrophobicity and electrostatic interaction (particularly for alumina). In addition, the adsorption of PFAS on these containers increased with the increasing of chain lengths and lg Kow. These results could be helpful for selecting suitable experimental materials for PFAS and it is very essential to pay attention to the adsorption of PFAS on experimental containers in aqueous solution in the future.
  • 图  1   接触时间对不同材质容器单位面积吸附水溶液中PFAS的影响

    注:误差棒为95%置信度下的置信区间,n=3。

    Figure  1.   The effect of contact time on the adsorption of waterborne PFAS in per unit area of containers with different materials

    图  2   不同浓度PFAS水溶液对其在不同材质容器单位面积上吸附的影响

    注:误差棒为95%置信度下的置信区间,n=3。

    Figure  2.   The effect of different concentration of PFAS on the adsorption of PFAS in per unit area of containers with different materials

    图  3   PFCAs和PFSAs在不同容器表面及不同浓度时的吸附率与碳链长度的关系

    注:虚线为吸附率随碳链长度增加的拟合曲线;灰色阴影为95%置信区间,n=3。

    Figure  3.   The relationship between the adsorption rate of PFCAs and PFSAs on different containers surface or different solution concentration with the carbon chain length

    图  4   吸附率与摩尔质量、lg Kow之间的关系

    注:虚线为拟合曲线,灰色阴影为95%置信区间,n=3。

    Figure  4.   The relationship between adsorption rate and molecular mass and lg Kow

    表  1   实验容器详细信息及供应商

    Table  1   The details of the experimental container and suppliers

    容器 材料 容积/mL 容器壁与溶液接触面积/cm2 供应商
    氧化铝罐 氧化铝 60 43.4 广州新鸿盛包装制品有限公司
    不锈钢罐 304不锈钢 200 31.4 深圳市志东翔贸易有限公司
    玻璃烧杯 玻璃 50 31.6 四川蜀玻(集团)有限责任公司
    陶瓷罐 陶瓷 75 33.2 德化县东泽陶瓷厂
    PS离心管 聚苯乙烯 15 29.2 海门市艾斯特实验器材厂
    PP离心管 聚丙烯 15 29.2 上海安谱实验科技有限公司
    PE离心管 聚乙烯 15 29.2 千陌医疗科技有限公司
    下载: 导出CSV

    表  2   全氟化合物标准品及内标的名称

    Table  2   The names of individual PFAS and internal standards

    中文名 简称 化学式 相对分子质量/(g·mol-1) lg Kow*
    全氟丁酸 PFBA C4HF7O2 214 1.90
    全氟丁烷磺酸(钠) PFBS C4F9SO3Na 300 3.38
    全氟戊酸 PFPeA C5HF9O2 264 2.54
    全氟己酸 PFHxA C6HF11O2 314 3.17
    全氟己烷磺酸(钠) PFHxS C6F11SO3Na 400 4.34
    全氟庚酸 PFHpA C7HF13O2 364 3.81
    全氟辛酸 PFOA C8HF15O2 414 4.45
    全氟辛烷磺酸(钠) PFOS C8F17SO3Na 500 5.92
    全氟壬酸 PFNA C9HF17O2 464 5.08
    全氟癸酸 PFDA C10HF19O2 514 5.72
    碳代全氟丁酸 M3PFBA 13C312CHF7O2
    碳代全氟戊酸 M3PFPeA 13C312C2HF11O2
    碳代全氟丁烷磺酸(钠) M3PFBS 13C4F9SO3Na
    碳代全氟己酸 MPFHxA 13C212C4HF9O2
    氧代全氟己烷磺酸(钠) MPFHxS C6F13S18O216ONa
    碳代全氟辛酸 MPFOA 13C412C4HF15O2
    碳代全氟辛烷磺酸(钠) MPFOS 13C412 C4F17SO3Na
    碳代全氟壬酸 MPFNA 13C512C4HF17O2
    碳代全氟癸酸 MPFDA 13C212C8HF19O2
    注:*源于USEPA, EPI suite 4.1。
    下载: 导出CSV

    表  3   10种PFAS在UPLC-MS/MS的线性范围、相关系数、检出限、定量限、日内精密度和日间精密度

    Table  3   The linear range, correlation coefficient, limits of detection, quantification, intra-and inter-day precisions for 10 PFAS using UPLC-MS/MS

    化合物 ρ线性范围/(μg·L-1) 回归方程 相关系数 检出限/(μg·L-1) 定量限/(μg·L-1) 日内精密度/% 日间精密度/%
    PFBA 1~100 y=0.39x-0.18 0.998 0.32 1.06 2.0 2.2
    PFBS 1~100 y=1.37x-0.15 0.999 0.22 0.74 3.0 4.5
    PFPeA 1~100 y=0.46x+0.13 0.999 0.10 0.33 4.3 1.1
    PFHxA 1~100 y=3.90x-0.67 0.999 0.20 0.67 2.6 2.1
    PFHxS 1~100 y=1.48x-0.63 0.996 0.13 0.42 3.2 1.2
    PFHpA 1~100 y=0.34x-0.10 0.999 0.22 0.75 3.3 1.0
    PFOA 1~100 y=0.95x+0.01 0.999 0.08 0.26 0.8 0.9
    PFOS 1~100 y=1.42x-0.35 0.998 0.06 0.21 1.9 2.4
    PFNA 1~100 y=1.99x-0.45 0.999 0.50 1.65 2.3 5.3
    PFDA 1~100 y=3.04x-0.07 0.999 0.11 0.37 1.8 1.9
    下载: 导出CSV
  • [1]

    HU X C, ANDREWS D Q, LINDSTROM A B, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants[J]. Environmental Science & Technology Letters, 2016, 3(10): 344-350.

    [2]

    WANG Z, DEWITT J C, HIGGINS C P, et al. A Never-ending story of per-and polyfluoroalkyl substances(PFASs)?[J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.

    [3]

    RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances(PFASs) in drinking water treatment: a review[J]. Water Research, 2014, 50: 318-340.

    [4]

    SUN M, AREVALO E, STRYNAR M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the cape fear river watershed of North Carolina[J]. Environmental Science & Technology Letters, 2016, 3(12): 415-419.

    [5]

    AHRENS L, NORSTROM K, VIKTOR T, et al. Stockholm Arlanda airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish[J]. Chemosphere, 2015, 129: 33-38. doi: 10.1016/j.chemosphere.2014.03.136

    [6]

    KIM S K, KANNAN K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes[J]. Environmental Science & Technology, 2007, 41(24): 8328-8334.

    [7]

    PERSSON S, ROTANDER A, KAERRMAN A, et al. Perfluoroalkyl acids in subarctic wild male mink (Neovison vison) in relation to age, season and geographical area[J]. Environment International, 2013, 59: 425-430. doi: 10.1016/j.envint.2013.06.025

    [8]

    SUNDERLAND E M, HU X C, DASSUNCAO C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science and Environmental Epidemiology, 2019, 29(2): 131-147. doi: 10.1038/s41370-018-0094-1

    [9]

    BORG D, LUND B O, LINDQUIST N G, et al. Cumulative health risk assessment of 17 perfluoroalkylated and polyfluoroalkylated substances (PFASs) in the Swedish population[J]. Environment International, 2013, 59: 112-123. doi: 10.1016/j.envint.2013.05.009

    [10]

    OECD. ENV/JM/MONO(2005)1 OECD Environment, health and safety publications series of risk management No. 19. (2005-01-13). Results of survey on production and use of PFOS, PFAS and PFOA, relatedsubstances and products/mixtures containing these substances[EB/OL]. http://wwwolisoecdorg/olis/2005docnsf/LinkTo/NT000-0097A/$FILE/JT00176885PDF, 2005.

    [11]

    XIE S, WANG T, LIU S, et al. Industrial source identification and emission estimation of perfluorooctane sulfonate in China[J]. Environment International, 2013, 52: 1-8. doi: 10.1016/j.envint.2012.11.004

    [12] 刘殿甲, 崔明, 吴宇峰, 等. 长链全氟化合物在前处理过程中的吸附情况研究[J]. 分析试验室, 2020, 39(5): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005022.htm

    LIU D J, CUI M, WU Y F, et al. Study on adsorption of long chain perfluorinated compounds during sample pretreatment[J]. Chinese Journal of Analysis Laboratory, 2020, 39(5): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005022.htm

    [13]

    MARTIN J W, KANNAN K, BERGER U, et al. Analytical challenges hamper perfluoroalkyl research[J]. Environmental Science & Technology, 2004, 38(13): 248-255.

    [14]

    SARI D. Water quality. Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry[S]. ISO International Standard, 2009.

    [15]

    POINT A D, HOLSEN T M, FERNANDO S, et al. Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 1876-1886.

    [16]

    BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258

    [17]

    GUAN D X, LI Y Q, YU N Y, et al. In situ measurement of perfluoroalkyl substances in aquatic systems using diffusive gradients in thin-films technique[J]. Water Research, 2018, 144: 162-171. doi: 10.1016/j.watres.2018.07.031

    [18]

    MARTIN J W, MABURY S A, SOLOMON K R, et al. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2003, 22(1): 189-195. doi: 10.1002/etc.5620220125

    [19]

    PAN C G, LIU Y S, YING G G. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: removal efficiency and exposure risk[J]. Water Research, 2016, 106: 562-570. doi: 10.1016/j.watres.2016.10.045

    [20]

    LATH S, KNIGHT E R, NAVARRO D A, et al. Sorption of PFOA onto different laboratory materials: filter membranes and centrifuge tubes[J]. Chemosphere, 2019, 222: 671-678. doi: 10.1016/j.chemosphere.2019.01.096

    [21]

    REINER J L, O'CONNELL S, BUTT C M, et al. Determination of perfluorinated alkyl acid concentrations in biological standard reference materials[J]. Analytical and Bioanalytical Chemistry, 2012, 404(9): 2683-2692. doi: 10.1007/s00216-012-5943-5

    [22]

    SHOEMAKER J A, BOUTIN B, GRIMMETT P. Development of a U.S. EPA drinking water method for the analysis of selected perfluoroalkyl acids by solid-phase extraction and LC-MS-MS[J]. Journal of Chromatographic Science, 2009, 47(1): 3-11. doi: 10.1093/chromsci/47.1.3

    [23]

    SHAROM M S, SOLOMON K R. Adsorption and desorption of Peprmethrin and other pesticides on glass and plastic materials used in bioassay procedures[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(2): 199-204. doi: 10.1139/f81-026

    [24]

    CHLEBOWSKI A C, TANGUAY R L, SIMONICH S. Quantitation and prediction of sorptive losses during toxicity testing of polycyclic aromatic hydrocarbon (PAH) and nitrated PAH (NPAH) using polystyrene 96-well plates[J]. Neurotoxicology & Teratology, 2016, 57: 30-38.

    [25]

    SEKINE R, KHURANA K, VASILEV K, et al. Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: test container effects and recommendations[J]. Nanotoxicology, 2015, 9(8): 1005-1012. doi: 10.3109/17435390.2014.994570

    [26] 郭瑾, 马军, 刘嵩, 等. 天然有机物在氧化铝表面的吸附机理研究[J]. 环境科学学报, 2006, 26(1): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200601017.htm

    GUO J, MA J, LIU S, et al. Adsorption mechanisms of NOM onto the surface of alumina[J]. Acta Scientiae Circumstantiae, 2006, 26(1): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200601017.htm

    [27]

    ZHANG C, YAN H, LI F, et al. Sorption of short- and long-chain perfluoroalkyl surfactants on sewage sludges[J]. Journal Of Hazardous Materials, 2013, 260: 689-699. doi: 10.1016/j.jhazmat.2013.06.022

    [28]

    MAIMAITI A, DENG S, MENG P, et al. Competitive adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-impacted groundwater[J]. Chemical Engineering Journal, 2018, 348: 494-502. doi: 10.1016/j.cej.2018.05.006

    [29]

    GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration[J]. Water Research, 2020, 171: 115381/1-31.

图(4)  /  表(3)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  495
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回