基于机器学习的钠离子电池剩余使用寿命预测

Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries

  • 摘要: 钠离子电池容量退化具有非线性和复杂性,准确预测剩余使用寿命(RUL)十分困难,因此构建SSA优化算法结合梯度提升回归树(GBRT)的RUL预测模型。对实验数据进行滤波平滑处理,绘制容量增量(IC)曲线,从IC曲线中提取与容量衰减相关性高的健康指标(HI),即IC峰值、峰值对应的电压值、峰值面积以及峰值斜率。利用PCA算法对数据进行降维处理以减少数据间的冗余性,将处理后的数据输入GBRT模型,并采用SSA算法寻找最优超参数提高预测精度。利用多组老化实验数据进行验证,RMSE、MAPE和MAE分别在15.2、7%、11.2以下,结果表明该模型有较高的预测精度及稳健性且优于其他主流算法。

     

    Abstract: Sodium-ion battery capacity degradation exhibits nonlinearity and complexity, making accurate prediction of remaining useful life (RUL) extremely difficult. Therefore, this paper proposes an RUL prediction model combining Singular Spectrum Analysis (SSA) optimization algorithm with Gradient Boosting Regression Tree (GBRT). Firstly, experimental data is filtered and smoothed, and Incremental Capacity (IC) curves are plotted. The health indicators (HI) with high correlation to capacity decay are extracted from the IC curves. Secondly, PCA algorithm is used to reduce data redundancy, and the processed data is inputted into the GBRT model. SSA algorithm is used to search for the optimal hyperparameters to improve prediction accuracy. Finally, multiple sets of aging experimental data are used for validation, with RMSE, MAPE, and MAE all below 15.2, 7%, and 11.2, respectively. The results show that the proposed model has high prediction accuracy and robustness and outperforms other mainstream algorithms.

     

/

返回文章
返回