留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进八度卷积算法的人脸表情识别

唐小煜 王东 林逸鑫 李萍

唐小煜, 王东, 林逸鑫, 李萍. 基于改进八度卷积算法的人脸表情识别[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 116-123. doi: 10.6054/j.jscnun.2023027
引用本文: 唐小煜, 王东, 林逸鑫, 李萍. 基于改进八度卷积算法的人脸表情识别[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 116-123. doi: 10.6054/j.jscnun.2023027
TANG Xiaoyu, WANG Dong, LIN Yixin, LI Ping. Facial Expression Recognition Based on Improved Octave Convolution Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 116-123. doi: 10.6054/j.jscnun.2023027
Citation: TANG Xiaoyu, WANG Dong, LIN Yixin, LI Ping. Facial Expression Recognition Based on Improved Octave Convolution Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 116-123. doi: 10.6054/j.jscnun.2023027

基于改进八度卷积算法的人脸表情识别

doi: 10.6054/j.jscnun.2023027
基金项目: 

教育部蓝火计划产学研联合创新资金项目 CXZJHZ201803

广东大学生科技创新培育专项资金(“攀登计划”专项资金)项目 pdjh2021a0126

详细信息
    通讯作者:

    唐小煜, Email:tangxy@ scnu.edu.cn

  • 中图分类号: TP391.41

Facial Expression Recognition Based on Improved Octave Convolution Algorithm

  • 摘要: 针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。
  • 图  1  改进后的八度卷积模块

    Figure  1.  The improved octave convolution module

    图  2  八度卷积块结构

    Figure  2.  The structure of octave convolution block

    图  3  DyReLU激活函数示意图

    Figure  3.  Diagram of DyReLU activation function

    图  4  OCNN模型的网络结构

    Figure  4.  Network structure of OCNN model

    表  1  不同低频分量占比模型的性能对比

    Table  1.   The performance comparation of models with different low-frequency components

    模型 参数量/(×106) 乘加次数/(×109) 浮点运算次数/(×109) RAF-DB准确率/%
    OCNN-a 2.7 2.65 1.33 86.05
    OCNN-b 2.7 2.15 1.08 86.99
    OCNN-c 2.7 1.65 0.83 87.19
    OCNN-d 2.7 1.15 0.58 86.44
    下载: 导出CSV

    表  2  原始八度卷积模型和OCNN-c模型的对比

    Table  2.   The comparation of original octave and OCNN-c convolution

    模型 参数量/(×106) 准确率/%
    FER2013 FERPlus RAF-DB
    传统八度卷积模型 2.9 72.56 88.49 86.34
    OCNN-c 2.7 72.64 88.62 87.19
    下载: 导出CSV

    表  3  使用不同激活函数的OCNN-c模型的准确率

    Table  3.   Accuracy of OCNN-c model with different activation functions

    模型 参数量/(×106) 准确率/%
    FER2013 FERPlus RAF-DB
    ReLU-a 8.9 72.47 88.46 86.63
    DyReLU-a 9.3 72.44 88.49 86.79
    ReLU-b 2.3 72.11 88.42 86.34
    DyReLU-b 2.7 72.64 88.62 87.19
    下载: 导出CSV

    表  4  与主流网络模型的对比

    Table  4.   The comparation of mainstream network models

    模型 输入特征图的尺寸 参数量/(×106) 准确率/% 乘加次数/(×109) 存储空间/MB
    FER2013 FERPlus RAF-DB
    Alexnet[15] 227×227×3 57.0 71.55 87.40 84.62 1.67 228.1
    VGG16[16] 224×224×3 134.3 72.72 88.17 86.96 30.95 537.2
    ResNet-18[17] 224×224×3 11.2 71.19 87.79 85.92 3.64 44.8
    DenseNet-121[26] 224×224×3 7.0 71.66 88.59 84.58 5.74 28.5
    OCNN 90×90×1 2.7 72.64 88.62 87.19 1.65 10.4
    下载: 导出CSV

    表  5  不同模型在FER2013数据集上的实验结果

    Table  5.   Experimental results of different models on the FER2013 dataset

    模型 准确率/%
    DenseNet+BC+CL[31] 72.20
    VGG+SVM[10] 66.31
    Pretrained CNN[27] 71.14
    Attentional CNN[32] 70.02
    GCN[28] 73.36
    VGG16+Focal Loss[13] 72.49
    DAF-CNN[33] 72.39
    OCNN 73.53
    下载: 导出CSV

    表  6  不同模型在FERPlus数据集上的实验结果

    Table  6.   Experimental results of different models on the FERPlus dataset

    模型 准确率/%
    VGG13[24] 85.01
    ResNet-18+VGG16[8] 87.40
    RAN+VGG16[29] 89.16
    RAN+ResNet-18[29] 88.55
    GCN[28] 88.91
    SCN+ResNet-18[11] 88.01
    SCN+ResNet-18+ArcFace[11] 89.35
    OCNN 89.58
    下载: 导出CSV

    表  7  不同模型在RAF-DB数据集上的实验结果

    Table  7.   Experimental results of different models on the RAF-DB dataset

    模型 准确率/%
    gACNN-VGG16[34] 85.07
    GAN[35] 85.69
    RAN+ResNet-18[29] 86.90
    GCN[28] 88.92
    SCN+ResNet-18[11] 88.14
    CLA-Net[36] 87.00
    OCNN 88.50
    下载: 导出CSV
  • [1] SHAN C F, GONG S G, MCOWAN P W. Facial expression recognition based on Local Binary Patterns: a comprehensive study[J]. Image and Vision Computing, 2009, 27(6): 803-816. doi: 10.1016/j.imavis.2008.08.005
    [2] MAHMUD F, ISLAM B, HOSSAIN A, et al. Facial region segmentation based emotion recognition using K-Nearest Neighbors[C]//Proceedings of 2018 International Confe-rence on Innovation in Engineering and Technology. Dhaka: IEEE, 2018: 1-5.
    [3] ZHI R C, FLIERL M, RUAN Q Q, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE Transaction on Systems, Man, and Cybernetics: Part B, 2011, 41(1): 38-52. doi: 10.1109/TSMCB.2010.2044788
    [4] ZHANG Z Y, MU X M, GAO L. Recognizing facial expressions based on Gabor filter selection[C]//Procee dings of International Congress on Image and Signal Processing. Shanghai: IEEE, 2011: 1544-1548.
    [5] 胡敏, 滕文娣, 王晓华, 等. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018, 40(6): 1338-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201806010.htm

    HU M, TENG W D, WANG X H, et al. Facial expression recognition based on local texture and shape features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1338-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201806010.htm
    [6] MATSUGU M, MORI K, MITARI Y, et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network[J]. Neural Networks, 2003, 16(5/6): 555-559.
    [7] SUN B, LI L, ZHOU G, et al. Facial expression recognition in the wild based on multimodal texture features[J]. Journal of Electronic Imaging, 2016, 25(6): 061407/1-8.
    [8] HUANG C. Combining convolutional neural networks for emotion recognition[C]//Proceedings of 2017 IEEE MIT Undergraduate Research Technology Conference. Cambridge: IEEE, 2017: 1-4.
    [9] 冯杨, 刘蓉, 鲁甜. 基于小尺度核卷积的人脸表情识别[J]. 计算机工程, 2021, 47(4): 262-267. doi: 10.19678/j.issn.1000-3428.0056775

    FENG Y, LIU R, LU T. Facial expression recognition based on small-scale kernel convolution[J]. Computer Engineering, 2021, 47(4): 262-267. doi: 10.19678/j.issn.1000-3428.0056775
    [10] GEORGESCU M I, IONESCU R T, POPESCU M. Local learning with deep and handcrafted features for facial expression recognition[J]. IEEE Access, 2019, 7: 64827-64836. doi: 10.1109/ACCESS.2019.2917266
    [11] WANG K, PENG X, YANG J, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6897-6906.
    [12] LI H, WANG N, DING X, et al. Adaptively learning facial expression representation via C-F labels and distillation[J]. IEEE Transactions on Image Processing, 2021, 30: 2016-2028. doi: 10.1109/TIP.2021.3049955
    [13] 崔子越, 皮家甜, 陈勇, 等. 结合改进VGGNet和Focal Loss的人脸表情识别[J]. 计算机工程与应用, 2021, 57(19): 171-178. doi: 10.3778/j.issn.1002-8331.2007-0492

    CUI Z Y, PI J T, CHEN Y, et al. Facial expression recognition combined with improved VGGNet and Focal Loss[J]. Computer Engineering and Applications, 2021, 57(19): 171-178. doi: 10.3778/j.issn.1002-8331.2007-0492
    [14] XUE F, WANG Q, GUO G. TransFER: learning relation-aware facial expression representations with transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3581-3590.
    [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, (2015-04-10)[2021-12-16]. https://arxiv.org/abs/1409.1556.
    [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    [18] CHEN Y, FAN H, XU B, et al. Drop an Octave: reducing spatial redundancy in convolutional neural networks with Octave Convolution[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 3434-3443.
    [19] MALLAT S G. A wavelet tour of signal processing[M]. New York: Academic Press, 1999.
    [20] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines Vinod Nair[C]//Procee-dings of the 27th International Conference on Machine Learning (ICML-10). Haifa: Omnipress, 2010: 807-814.
    [21] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
    [22] CHEN Y, DAI X, LIU M, et al. Dynamic ReLU[C]//Proceedings of Computer Vision-ECCV 2020: 16th European Conference. Berlin: Springer, 2020: 351-367.
    [23] GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]//Neural Information Processing: 20th International Conference, ICONIP 2013. Berlin: Springer, 2013: 117-124.
    [24] BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York: ACM, 2016: 279-283.
    [25] LI S, DENG W, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2852-2861.
    [26] HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
    [27] SHAO J, QIAN Y. Three convolutional neural network models for facial expression recognition in the wild[J]. Neurocomputing, 2019, 355: 82-92. doi: 10.1016/j.neucom.2019.05.005
    [28] JIANG P, WAN B, WANG Q, et al. Fast and efficient facial expression recognition using a Gabor convolutional network[J]. IEEE Signal Processing Letters, 2020, 27: 1954-1958. doi: 10.1109/LSP.2020.3031504
    [29] WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression re-cognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069. doi: 10.1109/TIP.2019.2956143
    [30] MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31.
    [31] SANG D V, LE T, HA P T. Discriminative deep feature learning for facial emotion recognition[C]//Proceedings of 2018 1st International Conference on Multimedia Analy-sis and Pattern Recognition. Ho Chi Minh City: IEEE, 2018: 1-6.
    [32] MINAEE S, ABDOLRASHIDI A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. Sensors, 2021, 21(9): 3046/1-16.
    [33] ZHOU L, FAN X, TJAHJADI T, et al. Discriminative attention-augmented feature learning for facial expression recognition in the wild[J]. Neural Computing and Applications, 2022, 34(2): 925-936. doi: 10.1007/s00521-021-06045-z
    [34] LI Y, ZENG J, SHAN S, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2439-2450.
    [35] GAN Y, CHEN J, YANG Z, et al. Multiple attention network for facial expression recognition[J]. IEEE Access, 2020, 8: 7383-7393. doi: 10.1109/ACCESS.2020.2963913
    [36] MA H, CELIK T, LI H C. Lightweight attention convolutional neural network through network slimming for robust facial expression recognition[J]. Signal Image and Video Processing, 2021, 15: 1507-1515. doi: 10.1007/s11760-021-01883-9
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  12
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回