The Judgment of Weyl's Theorem and Property (R)
-
摘要: 利用半Fredholm算子的扰动不变性,研究有界线性算子与上三角算子矩阵的Weyl型定理。首先,给出有界线性算子同时满足Browder定理和(R1)性质,或者同时满足Weyl定理和(R)性质的充要条件;然后,讨论上三角算子矩阵同时满足Weyl定理和(R)性质的条件。Abstract: The perturbation invariance of semi-Fredholm operators are used to study Weyl type theorems for boun-ded linear operators and upper triangular operator matrices. First, the necessary and sufficient conditions for which both the property(R1) and Browder's theorem hold or both the property (R) and Weyl's theorem hold for bounded linear operators are given. In addition, the conditions for which both the property (R) and Weyl's theorem hold for upper triangular operator matrices are explored.
-
-
[1] WEYL H V. Vber beschrÜnkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matema-tico Di Palermo, 1909, 27(1): 373-392. doi: 10.1007/BF03019655
[2] 孙晨辉, 白珍贵, 曹小红. 有界线性算子的Browder定理的判定[J]. 山东大学学报(理学版), 2021, 56(2): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202102005.htm SUN C H, BAI Z G, CAO X H. Judgement of Browder's theorem for bounded linear operators[J]. Journal of Shandong University (Natural Science), 2021, 56(2): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202102005.htm
[3] DAI L, CAO X H, GUO Q. Property (ω) and the single-valued extension property[J]. Acta Mathematica Sinica: English Series, 2021, 37(8): 1254-1266. doi: 10.1007/s10114-021-0436-0
[4] 孙晨辉, 白珍贵, 曹小红. 拓扑一致降标与Browder定理[J]. 云南大学学报(自然科学版), 2021, 43(4): 646-651. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202104004.htm SUN C H, BAI Z G, CAO X H. Topological uniform descent and Browder's theorem[J]. Journal of Yunnan University(Natural Sciences Edition), 2021, 43(4): 646-651. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202104004.htm
[5] ZHU S, LI C G, ZHOU T T. Weyl type theorems for functions of operators[J]. Glasgow Mathematical Journal, 2012, 54(3): 493-505. doi: 10.1017/S0017089512000092
[6] CAO X H, MENG B. Essential approximate point spectrum and Weyl's theorem for operator matrices[J]. Journal of Mathematical Analysis and Applications, 2005, 304(2): 759-771. doi: 10.1016/j.jmaa.2004.09.053
[7] WU X F, HUANG J J. Essential spectrum of upper triangular operator matrices[J]. Annals of Functional Analysis, 2020, 11(3): 780-798. doi: 10.1007/s43034-020-00054-0
[8] HUANG J J, LIU A C, CHEN A. Spectra of 2*2 upper triangular operator matrices[J]. Filomat, 2016, 30(13): 3587-3599. doi: 10.2298/FIL1613587H
[9] BAI Q M, HUANG J J, CHEN A. Weyl type theorems of 2*2 upper triangular operator matrices[J]. Journal of Mathematical Analysis and Applications, 2016, 434(2): 1065-1076. doi: 10.1016/j.jmaa.2015.09.061
[10] 郭奇, 曹小红, 戴磊. 有界线性算子(ω)性质的判定[J]. 吉林大学学报(理学版), 2019, 57(2): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201902003.htm GUO Q, CAO X H, DAI L. Judgement of property (ω) of bounded linear operators[J]. Journal of Jilin University (Science Edition), 2019, 57(2): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201902003.htm
[11] KONG Y Y, JIANG L N, REN Y X. The Weyl's theorem and its perturbations in semisimple banach algebra[J]. Acta Mathematica Sinica: English Series, 2021, 37(5): 675-688. doi: 10.1007/s10114-021-0434-2
[12] 王静, 曹小红. 有界线性算子的Weyl定理的判定[J]. 浙江大学学报(理学版), 2020, 47(5): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202005004.htm WANG J, CAO X H. The judgement of Browder's theorem for bounded linear operators[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202005004.htm
[13] AIENA P, GUILLEN J R, PENA P. Property (R) for bounded linear operators[J]. Mediterranean Journal of Mathematics, 2011, 8(4): 491-508. doi: 10.1007/s00009-011-0113-0
[14] 赵小鹏, 戴磊, 曹小红. 有界线性算子的拓扑一致降标与(R)性质[J]. 山东大学学报(理学版), 2021, 56(12): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202112010.htm ZHAO X P, DAI L, CAO X H. Topological uniform descent and property (R) for bounded linear operators[J]. Journal of Shandong University (Natural Science), 2021, 56(12): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202112010.htm
[15] AIENA P, APONTE E, GUILLEN J R, et al. Property (R) under perturbations[J]. Mediterranean Journal of Mathematics, 2013, 10: 367-382.
[16] HARTE R, LEE W Y. Another note on Weyl's theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5): 2115-2124.
[17] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163: 18-49.
计量
- 文章访问数: 111
- HTML全文浏览量: 23
- PDF下载量: 39