留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

累积运动对胰岛素抵抗小鼠心肌胶原纤维的影响

张玉丽 帅祥煜 梁飞 齐园圃 张丽美 闫旭洁 梁伟宝 王松涛

张玉丽, 帅祥煜, 梁飞, 齐园圃, 张丽美, 闫旭洁, 梁伟宝, 王松涛. 累积运动对胰岛素抵抗小鼠心肌胶原纤维的影响[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 73-79. doi: 10.6054/j.jscnun.2023022
引用本文: 张玉丽, 帅祥煜, 梁飞, 齐园圃, 张丽美, 闫旭洁, 梁伟宝, 王松涛. 累积运动对胰岛素抵抗小鼠心肌胶原纤维的影响[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 73-79. doi: 10.6054/j.jscnun.2023022
ZHANG Yuli, SHUAI Xiangyu, LIANG Fei, QI Yuanpu, ZHANG Limei, YAN Xujie, LIANG Weibao, WANG Songtao. The Effect of Accumulated Exercise on Myocardial Collagen Fibers in Insulin Resistant Mice[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 73-79. doi: 10.6054/j.jscnun.2023022
Citation: ZHANG Yuli, SHUAI Xiangyu, LIANG Fei, QI Yuanpu, ZHANG Limei, YAN Xujie, LIANG Weibao, WANG Songtao. The Effect of Accumulated Exercise on Myocardial Collagen Fibers in Insulin Resistant Mice[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 73-79. doi: 10.6054/j.jscnun.2023022

累积运动对胰岛素抵抗小鼠心肌胶原纤维的影响

doi: 10.6054/j.jscnun.2023022
基金项目: 

广东省科技计划项目 2017A020220001

详细信息
    通讯作者:

    王松涛,Email: songtaowang@126.com

  • 中图分类号: G804.2

The Effect of Accumulated Exercise on Myocardial Collagen Fibers in Insulin Resistant Mice

  • 摘要: 累积运动是打破久坐行为和改善代谢健康的有效手段。为了探究累积运动的健康干预价值,文章通过对胰岛素抵抗(IR)小鼠进行长期的运动干预,比较了不同强度的累积运动和持续运动对小鼠IR状态、心肌胶原纤维和心肌纤维化蛋白表达的影响。首先,高脂饲料喂养112只C57BL/6J雄性小鼠(4周龄)诱导IR小鼠模型;然后,用中等强度持续运动、中等强度累积运动和大强度累积运动干预IR小鼠8周,进行口服葡萄糖耐量实验(OGTT),眼眶取血后处死小鼠, 摘取其心脏组织;其次,使用ELISA方法检测小鼠血清空腹胰岛素(FINS)水平和心肌组织Ⅰ型胶原(COLⅠ)、Ⅲ型胶原(COLⅢ)、平滑肌肌动蛋白(α-SMA)含量;使用Western blot方法检测小鼠心肌组织转化生长因子β1(TGF-β1)、Smad3、结缔组织生长因子(CTGF)蛋白表达水平。结果显示:3种运动均可以改善IR小鼠的IR状态和心肌纤维化程度,大强度累积运动与中等强度持续运动的作用效果相当,中等强度累积运动的作用效果较弱。
  • 图  1  高脂饲料喂养对C57BL/6J小鼠OGTT的影响

    Figure  1.  Influence of OGTT by high-fat diet in C57BL/6J mice

    图  2  各组小鼠心肌组织TGF-β1、Smad3、CTGF蛋白的相对表达量

    Figure  2.  Relative expression of TGF-β1, Smad3 and CTGF protein in myocardial tissue of each group

    表  1  小鼠运动干预方案

    Table  1.   The program of exercise intervention for mice

    分组 运动速度/(m·min-1) 单次运动时间/min 重复次数 次间间隔时间/h
    MCE 11 50.0 1 /
    MAE 11 12.5 4 3
    HAE 19 7.5 4 3
    下载: 导出CSV

    表  2  普通饲料或高脂饲料喂养后小鼠的BW和IR评价结果

    Table  2.   Mice's BW and IR model results after dietary intervention

    分组 BW/g OGTT-AUC FPG/(mmol·L-1) FINS/(mU·L-1) QUICKI HOMA-IR
    NC 26.08±1.54 15.53±1.52 5.53±0.63 7.69±0.57 0.59±0.01 2.15±0.24
    HFD 31.98±2.08** 23.13±2.11** 8.08±0.84** 10.39±1.44* 0.51±0.01** 4.00±0.26**
    注:与NC组相比,*表示P<0.05,**表示P<0.01。
    下载: 导出CSV

    表  3  运动干预后各组小鼠的BW、FPG、OGTT-AUC和FINS

    Table  3.   The BW, FPG, OGTT-AUC and FINS in mice after exercise

    分组 BW/g FPG/(mmol·L-1) OGTT-AUC FINS/(mU·L-1)
    IRC 31.45±2.37 8.43±0.84 19.37±1.56 9.66±1.37
    MCE 28.69±2.01## 6.82±0.25## 15.23±1.01## 7.58±0.67##
    MAE 27.71±1.99## 6.73±0.15## 14.10±0.92## 7.70±0.13#
    HAE 26.24±1.54##†† 6.47±0.29## 15.28±0.60## 7.44±0.45##
    注:与IRC组相比:#表示P<0.05,##表示P<0.01;与MCE组相比:††表示P<0.01。
    下载: 导出CSV

    表  4  运动干预后各组小鼠心肌组织胶原纤维含量

    Table  4.   The content of myocardial collagen fibers in mice after exercise

    分组 COLI/(μg·L-1) COLIII/(μg·L-1) COLI/COLIII
    IRC 23.19±0.39 9.55±0.44 2.32±0.14
    MCE 18.62±0.88## 7.98±0.40## 2.07±0.02#
    MAE 20.54±0.39##† 7.97±0.37## 2.29±0.12
    HAE 19.18±0.61## 7.70±0.24## 2.20±0.02
    注:与IRC组相比:#表示P<0.05,##表示P<0.01;与MCE组相比:†表示P<0.05。
    下载: 导出CSV
  • [1] WILSON J J, BLACKBURN N E, O'REILLY R, et al. Association of objective sedentary behaviour and self-rated health in English older adults[J]. BMC Research Notes, 2019, 12(1): 12/1-6. doi: 10.1186/s13104-019-4144-0
    [2] HENSON J, DUNSTAN D W, DAVIES M J, et al. Sedentary behaviour as a new behavioural target in the prevention and treatment of type 2 diabetes[J]. Diabetes/Metabolism Research and Reviews, 2016, 32(S1): 213-220.
    [3] HAMILTON M T, HAMILTON D G, ZDERIC T W. Se-dentary behavior as a mediator of type 2 diabetes[J]. Medicine and Sport Science, 2014, 60: 11-26.
    [4] LAHJIBI E, HEUDE B, DEKKER J M, et al. Impact of objectively measured sedentary behaviour on changes in insulin resistance and secretion over 3 years in the RISC study: interaction with weight gain[J]. Diabetes & Metabolism, 2013, 39(3): 217-225. doi: 10.3969/j.issn.1006-6187.2013.03.007
    [5] SAUNDERS T J, LAROUCHE R, COLLEY R C, et al. Acute sedentary behaviour and markers of cardiometabolic risk: a systematic review of intervention studies[J]. Journal of Nutrition and Metabolism, 2012, 2012: 712435/1-12.
    [6] HEALY G N, DUNSTAN D W, SALMON J, et al. Television time and continuous metabolic risk in physically active adults[J]. Medicine & Science in Sports & Exercise, 2008, 40(4): 639-645.
    [7] GARDNER B, SMITH L, LORENCATTO F, et al. How to reduce sitting time?A review of behaviour change strategies used in sedentary behaviour reduction interventions among adults[J]. Health Psychology Review, 2016, 10(1): 89-112. doi: 10.1080/17437199.2015.1082146
    [8] PHILLIPS C M, DILLON C B, PERRY I J. Does replacing sedentary behaviour with light or moderate to vigo-rous physical activity modulate inflammatory status in adults?[J]. International Journal of Behavioral Nutrition and Physical Activity, 2017, 14: 138/1-12.
    [9] BAILEY D P, LOCKE C D. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not[J]. Journal of Science and Medicine in Sport, 2015, 18(3): 294-298. doi: 10.1016/j.jsams.2014.03.008
    [10] ERIKSEN L, DAHL-PETERSEN I, HAUGAARD S B, et al. Comparison of the effect of multiple short-duration with single long-duration exercise sessions on glucose homeostasis in type 2 diabetes mellitus[J]. Diabetologia, 2007, 50(11): 2245-2253. doi: 10.1007/s00125-007-0783-0
    [11] MAGUTAH K, MEIRING R, PATEL N B, et al. Effect of short and long moderate-intensity exercises in modifying cardiometabolic markers in sedentary Kenyans aged 50 years and above[J]. BMJ Open Sport & Exercise Medicine, 2018, 4(1): e000316/1-7.
    [12] MURPHY M H, BLAIR S N, MURTAGH E M. Accumulated versus continuous exercise for health benefit a review of empirical studies[J]. Sports Medicine, 2009, 39(1): 29-43. doi: 10.2165/00007256-200939010-00003
    [13] MIYASHITA M. Effects of continuous versus accumulated activity patterns on postprandial triacylglycerol concentrations in obese men[J]. International Journal of Obesity(Lond), 2008, 32(8): 1271-1278. doi: 10.1038/ijo.2008.73
    [14] YAP M C, BALASEKARAN G, BURNS S F. Acute effect of 30 min of accumulated versus continuous brisk walking on insulin sensitivity in young Asian adults[J]. European Journal of Applied Physiology, 2015, 115(9): 1867-1875. doi: 10.1007/s00421-015-3174-0
    [15] MURPHY M, NEVILL A, NEVILLE C, et al. Accumulating brisk walking for fitness, cardiovascular risk, and psychological health[J]. Medicine & Science in Sports & Exercise, 2002, 34(9): 1468-1474.
    [16] MURTAGH E M, BOREHAM C A, NEVILL A, et al. The effects of 60 minutes of brisk walking per week, accumula-ted in two different patterns, on cardiovascular risk[J]. Preventive Medicine, 2005, 41(1): 92-97. doi: 10.1016/j.ypmed.2004.10.008
    [17] 范锦勤, 张丽美, 张亚松, 等. 累积运动对肥胖大鼠内脏脂肪组织巨噬细胞极化的影响[J]. 体育学刊, 2018, 25(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TYXK201802024.htm

    FAN J Q, ZHANG L M, ZHANG Y S, et al. Effects of accumulated exercise on the polarization of macrophages in visceral adipose tissue of obese rats[J]. Journal of Physical Education, 2018, 25(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TYXK201802024.htm
    [18] HASKELL W L, LEE I M, PATE R R, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association[J]. Circulation, 2007, 116(9): 1081-1093. doi: 10.1161/CIRCULATIONAHA.107.185649
    [19] GELINEAU R R, ARRUDA N L, HICKS J A, et al. The behavioral and physiological effects of high-fat diet and alcohol consumption: sex differences in C57BL6/J mice[J]. Brain & Behavior, 2017, 7(6): e00708/1-17.
    [20] MLINAR B, MARC J, JANEZ A, et al. Molecular mechanisms of insulin resistance and associated diseases[J]. Clinica Chimica Acta, 2007, 375(1/2): 20-35.
    [21] MANN T N, WEBSTER C, LAMBERTS R P, et al. Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery[J]. European Journal of Applied Physiology, 2014, 114(9): 1809-1820. doi: 10.1007/s00421-014-2907-9
    [22] SMITH J, NAUGHTON L M. The effects of intensity of exercise on excess postexercise oxygen consumption and energy expenditure in moderately trained men and women[J]. European Journal of Applied Physiology and Occupational Physiology, 1993, 67(5): 420-425. doi: 10.1007/BF00376458
    [23] LARSEN I, WELDE B, MARTINS C, et al. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome[J]. Scandinavian Journal of Medicine & Science in Sports, 2014, 24(3): e174-e179.
    [24] SZCZEPANIAK L S, DOBBINS R L, METZGER G J, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging[J]. Magnetic Resonance in Medicine, 2003, 49(3): 417-423. doi: 10.1002/mrm.10372
    [25] SUN X, PAN H, TAN H, et al. High free fatty acids level related with cardiac dysfunction in obese rats[J]. Diabetes Research and Clinical Practice, 2012, 95(2): 251-259. doi: 10.1016/j.diabres.2011.10.028
    [26] CAVALERA M, WANG J, FRANGOGIANNIS N G. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities[J]. Translational Research, 2014, 164(4): 323-335. doi: 10.1016/j.trsl.2014.05.001
    [27] WARBRICK I, RABKIN S W. Hypoxia-inducible factor 1-alpha (HIF-1alpha) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction[J]. Obesity Reviews, 2019, 20(5): 701-712. doi: 10.1111/obr.12828
    [28] MAHAJAN R, LAU D H, SANDERS P. Impact of obesity on cardiac metabolism, fibrosis, and function[J]. Trends in Cardiovascular Medicine, 2015, 25(2): 119-126.
    [29] VAN PUTTEN S, SHAFIEYAN Y, HINZ B. Mechanical control of cardiac myofibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016, 93: 133-142.
    [30] NAKATANI T, HONDA E, HAYAKAWA S, et al. Effects of decorin on the expression of alpha-smooth muscle actin in a human myofibroblast cell line[J]. Molecular and Cellular Biochemistry, 2008, 308(1/2): 201-207.
    [31] WANG Q J, USINGER W, NICHOLS B, et al. Cooperative interaction of CTGF and TGF-b in animal models of fibrotic disease[J]. Fibrogenesis & Tissue Repair, 2011, 4(1): 4/1-11.
    [32] TRAVERS J G, KAMAL F A, ROBBINS J, et al. Cardiac fibrosis: the fibroblast awakens[J]. Circulation Research, 2016, 118(6): 1021-1040.
    [33] LEASK A. TGFbeta, cardiac fibroblasts, and the fibrotic response[J]. Cardiovascular Research, 2007, 74(2): 207-212.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  15
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回