Mechanism of Ephedra-Guizhi in Treatment of Rheumatoid Arthritis Based on Network Pharmacology and Molecular Docking
-
摘要: 通过TCMSP数据库检索麻黄、桂枝中的活性成分以及对应的靶点蛋白,在GeneCards数据库中以“rheumatoid arthritis”为关键词检索类风湿性关节炎(RA)的相关靶点,将收集的2类靶点相互映射取交集后通过STRING平台构建PPI网络,利用Cytoscape软件进行可视化分析;借助David 6.8数据库,对交集靶点进行GO与KEGG富集分析;最后利用Schrodinger软件对核心靶点与关键活性成分进行分子对接验证。2类靶点映射得到交集靶点共134个,PPI分析得到核心靶点为AKT1、IL6、TP53、RELA和CCND1。GO与KEGG富集分析得到关键信号通路为TNF信号通路、Toll样受体信号通路和PI3K-Akt信号通路。分子对接结果显示槲皮素、木犀草素、二氢槲皮素与AKT1、IL6、TP53有较好的结合效果。研究推测麻黄-桂枝药对中的活性成分可能通过抑制炎性介质表达、抑制关节滑膜中树突细胞以及巨噬细胞过量增殖等途径来阻止RA病理发展进程。Abstract: The active components and corresponding target proteins in Ephedra and Guizhi were retrieved through TCMSP database, and Rheumatoid Arthritis(RA) related targets were retrieved with "rheumatoid arthritis" as the keyword in GeneCards database. After the collected two types of targets were mapped and intersected with each other, PPI network was constructed through STRING platform, and visual analysis was carried out by Cytoscape software. At the same time, the intersection targets were enriched and analyzed by GO and KEGG with the help of David 6.8 database. Finally, the core target and key active components were docking verified by Schrodinger software. Two kinds of targets are mapped, there are 134 intersection targets. PPI analysis shows that the core targets are AKT1, IL6, TP53, RELA and CCND1. Go and KEGG enrichment analysis showed that the key signal pathways were TNF signal pathway, Toll like receptor signal pathway and PI3K-Akt signal pathway. Molecular docking results showed that quercetin, luteolin and dihydroquercetin had good binding effects with AKT1, IL6 and TP53. It is concluded that the active components of Ephedra-Guizhi may play a role in the treatment of rheumatoid arthritis by inhibiting the expression of inflammatory mediators and suppressing the excessive proliferation of dendritic cells and macrophages in joint synovium to prevent pathological progression of RA.
-
表 1 麻黄-桂枝药对中的活性成分
Table 1. Active ingredients in Ephedra-Guizhi drug pair
MOL ID 来源 代号 化合物 OB/% DL MOL010788 麻黄 MH1 leucopelargonidin 57.97 0.24 MOL002823 麻黄 MH2 herbacetin 36.07 0.27 MOL010489 麻黄 MH3 resivit 30.84 0.27 MOL000422 麻黄 MH4 kaempferol 41.88 0.24 MOL004798 麻黄 MH5 delphinidin 40.63 0.28 MOL000098 麻黄 MH6 quercetin 46.43 0.28 MOL000006 麻黄 MH7 luteolin 36.16 0.25 MOL000449 麻黄 MH8 stigmasterol 43.83 0.76 MOL001494 麻黄 MH9 mandenol 42.00 0.19 MOL001755 麻黄 MH10 24-Ethylcholest-4-en-3-one 36.08 0.76 MOL001771 麻黄 MH11 poriferast-5-en-3beta-ol 36.91 0.75 MOL002881 麻黄 MH12 diosmetin 31.14 0.27 MOL004328 麻黄 MH13 naringenin 59.29 0.21 MOL005043 麻黄 MH14 campest-5-en-3beta-ol 37.58 0.71 MOL005190 麻黄 MH15 eriodictyol 71.79 0.24 MOL005573 麻黄 MH16 genkwanin 37.13 0.24 MOL005842 麻黄 MH17 pectolinarigenin 41.17 0.30 MOL007214 麻黄 MH18 (+)-Leucocyanidin 37.61 0.27 MOL011319 麻黄 MH19 truflex OBP 43.74 0.24 MOL001736 桂枝 GZ1 (-)-taxifolin 60.51 0.27 MOL000359 桂枝 GZ2 sitosterol 36.91 0.75 MOL000073 桂枝 GZ3 ent-Epicatechin 48.96 0.24 MOL000358 麻黄/桂枝 A1 beta-sitosterol 36.91 0.75 MOL000492 麻黄/桂枝 A2 (+)-catechin 54.83 0.24 MOL004576 麻黄/桂枝 A3 taxifolin 57.84 0.27 注:OB为口服生物利用度,DL为类药性。 表 2 排名前20的信号通路
Table 2. The information of top 20 pathways
编号 信号通路 靶蛋白富集数/个 P值 关键靶点 1 Hepatitis B 35 2.35E-29 TP53、JUN、AKT1、FOS、IL6、RELA、CCND1 2 Pathways in cancer 50 3.13E-29 TP53、JUN、AKT1、FOS、IL6、RELA、EGFR、CCND1 3 Bladder cancer 20 4.19E-23 TP53、EGFR、CCND1 4 Pancreatic cancer 23 5.62E-23 TP53、AKT1、RELA、EGFR、CCND1 5 TNF signaling pathway 25 2.92E-20 JUN、AKT1、FOS、IL6、RELA 6 Prostate cancer 22 2.06E-18 TP53、AKT1、RELA、EGFR、CCND1 7 Chagas disease (American trypanosomiasis) 23 4.88E-18 JUN、AKT1、FOS、IL6、RELA 8 Chronic myeloid leukemia 20 1.24E-17 TP53、AKT1、RELA、CCND1 9 Toxoplasmosis 22 2.76E-16 AKT1、RELA 10 Glioma 18 8.37E-16 TP53、AKT1、EGFR、CCND1 11 Proteoglycans in cancer 27 1.13E-15 TP53、AKT1、EGFR、CCND1 12 Non-small cell lung cancer 17 1.32E-15 TP53、AKT1、EGFR、CCND1 13 HIF-1 signaling pathway 20 4.25E-15 AKT1、IL6、RELA、EGFR 14 Colorectal cancer 17 8.17E-15 TP53、JUN、AKT1、FOS、CCND1 15 Toll-like receptor signalingpathway 20 2.93E-14 JUN、AKT1、FOS、IL6、RELA 16 Melanoma 17 8.37E-14 TP53、AKT1、EDFR、CCND1 17 Small cell lung cancer 18 1.1E-13 TP53、AKT1、RELA、CCND1 18 PI3K-Akt signaling pathway 31 3.32E-13 TP53、AKT1、IL6、RELA、EGFR、CCND1 19 Influenza A 23 4.15E-13 JUN、AKT1、IL6、RELA 20 Leishmaniasis 16 1.45E-12 JUN、FOS、RELA 表 3 关键活性成分与5个核心靶点的对接分数
Table 3. Docking information of key active ingredients and five core targets
化合物 结构 CAS号 对接分数/(kcal·mol-1) TP53 AKT1 IL6 RELA CCND1 槲皮素 117-39-5 -8.119 -7.243 -6.321 -5.317 -5.364 木犀草素 491-70-3 -8.713 -7.537 -6.452 -5.428 -5.412 二氢槲皮素 480-18-2 -8.442 -7.738 -5.341 -5.786 -5.874 山奈酚 25615-14-9 -6.493 -7.231 -3.698 -5.228 -5.012 柚皮苷 158196-34-0 -7.430 -7.193 -3.514 -5.661 -4.312 β-谷甾醇 83-46-5 -5.700 -5.241 -3.574 -4.657 -3.162 -
[1] ITOH Y. Metalloproteinases in rheumatoid arthritis: potential therapeutic targets to improve current therapies[J]. Progress in Molecular Biology and Translational Science, 2017, 148(2): 327-338. [2] SWALES C, ATHANASOU N A, KNOWLES H J. Angiopoietin-like 4 is over-expressed in rheumatoid arthritis patients: association with pathological bone resorption[J]. PloS One, 2014, 9(10): e109524/1-8. [3] BRENNAN F M, MAINI R N, FELDMANN M. Role of pro-inflammatory cytokines in rheumatoid arthritis[J]. Springer Semin Immunopathol, 1998, 20(1): 133-147. [4] 蔡雄, 周华, 徐宏喜, 等. 类风湿性关节炎的中医临床治疗研究概况[J]. 中华中医药杂志, 2005, 20(5): 309-311. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY200505020.htmCAI X, ZHOU H, XU H X, et al. Overview of TCM clinical treatment of rheumatoid arthritis[J]. Chinese Journal of Traditional Chinese Medicine, 2005, 20(5): 309-311. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY200505020.htm [5] WANG X M, XU W J, XU L K, et al. Antipyretic effect of Herba Ephedrae-Ramulus Cinnamomi herb pair on yeast-induced pyrexia rats: a metabolomics study[J]. Chinese Journal of Integrative Medicine, 2018, 24(9): 676-682. doi: 10.1007/s11655-017-2778-0 [6] 李肖, 秦晴, 王小帆, 等. 麻黄附子细辛汤合桃红四物汤加味治疗类风湿性关节炎30例临床观察[J]. 中国民族民间医药, 2019, 28(13): 110-112. doi: 10.3969/j.issn.1007-8517.2019.13.zgmzmjyyzz201913030LI X, QIN Q, WANG X F, et al. Clinical observation on 30 cases of rheumatoid arthritis treated with Mahuang Fuzi Asarum Decoction and Taohong Siwu Decoction[J]. Chinese National and Folk Medicine, 2019, 28(13): 110-112. doi: 10.3969/j.issn.1007-8517.2019.13.zgmzmjyyzz201913030 [7] YASEEN H S, ASIF M, SAADULLAH M, et al. Methano-lic extract of Ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α[J]. Inflammopharmacology, 2020, 28(6): 1691-1704. doi: 10.1007/s10787-020-00713-7 [8] JI W, HU J, YU X, et al. Study on the inhibitory effects of Ephedra Aconite Asarum Decoction on LPS-induced dendritic cells[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017(3): 3272649/1-10. [9] 李树东, 王艳. 桂枝芍药知母汤治疗类风湿关节炎临床研究[J]. 中外医疗, 2014, 13(25): 147-148. doi: 10.3969/j.issn.1674-0742.2014.25.074LI S D, WANG Y. Clinical study on Guizhi Shaoyao Zhimu Decoction in the treatment of rheumatoid arthritis[J]. Chinese and Foreign Medical, 2014, 13(25): 147-148. doi: 10.3969/j.issn.1674-0742.2014.25.074 [10] 赵慧. 桂枝芍药知母汤对Ⅱ型胶原诱导的关节炎大鼠作用机制的实验研究[D]. 北京: 北京中医药大学, 2006.ZHAO H. Experimental research on the mechanisms of Guizhishaoyaozhimu decotion's effect on the type Ⅱ co-llagen-induced Rat arthritis[D]. Beijing: Beijing University of Chinese Medicine, 2006. [11] 宋瑗瑗, 曹洪玉, 未志俞, 等. 基于分子对接探究熊果酸衍生物H21对引起炎症的关键蛋白的作用[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 59-64. doi: 10.6054/j.jscnun.2021027SONG Y Y, CAO H Y, WEI Z Y, et al. Exploring the effect of ursolic acid derivative H21 on key proteins causing inflammation based on molecular docking[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(2): 59-64. doi: 10.6054/j.jscnun.2021027 [12] LIN K, LIN J, WU W I, et al. An ATP-site on-off switch that restricts phosphatase accessibility of Akt[J]. Science Signaling, 2012, 5(223): ra37/1-11. [13] BAUER M R, JONES R N, TAREQUE R K, et al. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C[J]. Future Medicinal Chemistry, 2019, 11(19): 2491-2504. doi: 10.4155/fmc-2019-0181 [14] SHAW S, BOURNE T, MEIER C, et al. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling[J]. MAbs, 2014, 6(3): 774-782. [15] SCOTT D L, WOLFE F, HUIZINGA T W. Rheumatoid arthritis[J]. Lancet, 2010, 376: 1094-1108. doi: 10.1016/S0140-6736(10)60826-4 [16] SALEEM A, SALEEM M, AKHTAR M F, et al. Polystichum braunii extracts inhibit Complete Freund's adjuvant-induced arthritis via upregulation of I-κB, IL-4, and IL-10, downregulation of COX-2, PGE2, IL-1β, IL-6, NF-κB, and TNF-α, and subsiding oxidative stress[J]. Inflammopharmacology, 2020, 28(6): 1633-1648. [17] 沈瑞明, 李国铨, 钟良宝. 木犀草素对急性痛风性关节炎模型大鼠的抗炎作用研究[J]. 海南医学院学报, 2019, 25(17): 1300-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYY201917006.htmSHEN R M, LI G Q, ZHONG L B. Anti inflammatory effect of luteolin on acute gouty arthritis model rats[J]. Journal of Hainan Medical College, 2019, 25(17): 1300-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYY201917006.htm [18] HOU Y, WU J, HUANG Q, et al. Luteolin inhibits prolife-ration and affects the function of stimulated rat synovial fibroblasts[J]. Cell Biology International, 2009, 33(2): 135-147. [19] LOU L, LIU Y, ZHOU J, et al. Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1β-induced fibroblast-like synoviocytes through regulating the activation of NF-κB and JAK/STAT-signaling pathways[J]. Immunopharmacol Immunotoxicol, 2015, 37(6): 499-507. [20] ZHANG H Q, WANG Y J, YANG G T, et al. Taxifolin inhibits receptor activator of NF-κB ligand-induced osteoclastogenesis of human bone marrow-derived macrophages in vitro and prevents lipopolysaccharide-induced bone loss in vivo[J]. Pharmacology, 2019, 103(1/2): 101-109. [21] 王佳奇, 陈凯, 王月亮, 等. 二氢槲皮素与二氢杨梅素抗炎活性对比研究[J]. 中国兽药杂志, 2016, 50(7): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYY201607009.htmWANG J Q, CHEN K, WANG Y L, et al. Comparison of anti-inflammatory activity of dihydroquercetin and dihydromyricetin[J]. Chinese Journal of Veterinary Drug, 2016, 50(7): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYY201607009.htm [22] YANG J, CHENG M, GU B, et al. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κB axis[J]. Cell Death & Disease, 2020, 11(10): 833-846. [23] IGARASHI H, HASHIMOTO J, TOMITA T, et al. TP53 mutations coincide with the ectopic expression of activation-induced cytidine deaminase in the fibroblast-like synoviocytes derived from a fraction of patients with rheumatoid arthritis[J]. Clinical & Experimental Immunology, 2010, 161(1): 71-80. [24] MALEMUD C J. The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis[J]. Future Medicinal Chemistry, 2015, 7(9): 1137-1147. [25] HWANG S Y, KIM J Y, KIM K W, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB-and PI3-kinase/Akt-dependent pathways[J]. Arthritis Research & Therapy, 2004, 6(2): 120-128. -