青蒿活性成分中GPX4激动剂的虚拟筛选研究

于大永, 付思雨, 温泽宇, 宋佳, 史丽颖

于大永, 付思雨, 温泽宇, 宋佳, 史丽颖. 青蒿活性成分中GPX4激动剂的虚拟筛选研究[J]. 华南师范大学学报(自然科学版), 2022, 54(6): 59-67. DOI: 10.6054/j.jscnun.2022086
引用本文: 于大永, 付思雨, 温泽宇, 宋佳, 史丽颖. 青蒿活性成分中GPX4激动剂的虚拟筛选研究[J]. 华南师范大学学报(自然科学版), 2022, 54(6): 59-67. DOI: 10.6054/j.jscnun.2022086
YU Dayong, FU Siyu, WEN Zeyu, SONG Jia, SHI Liying. Virtual Screening of GPX4 Agonists in the Active Ingredients of Artemisia Annua[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 59-67. DOI: 10.6054/j.jscnun.2022086
Citation: YU Dayong, FU Siyu, WEN Zeyu, SONG Jia, SHI Liying. Virtual Screening of GPX4 Agonists in the Active Ingredients of Artemisia Annua[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 59-67. DOI: 10.6054/j.jscnun.2022086

青蒿活性成分中GPX4激动剂的虚拟筛选研究

基金项目: 

辽宁省科学技术计划项目 2019-ZD-0564

大连大学优秀青年科研创新创业团队 XQN202004

详细信息
    通讯作者:

    史丽颖,Email: shiliying@dlu.edu.cn

  • 中图分类号: R284.1

Virtual Screening of GPX4 Agonists in the Active Ingredients of Artemisia Annua

  • 摘要: 谷胱甘肽过氧化物酶4(GPX4)是一种能够特异性催化谷胱甘肽将脂质过氧化物转化为类脂醇的硒蛋白,其表达量上调在抑制细胞铁死亡以及相关炎症反应中发挥着重要的作用。为了在青蒿成分中筛选出激动GPX4的潜在活性小分子,首先在“中药系统药理学数据库与分析平台(TCMSP)”检索得到126个青蒿活性小分子;然后,通过类药性筛选出50个青蒿活性小分子;其次,采用GPX4-配体对接模拟和GPX4-配体互作模式对比筛选出8个青蒿活性小分子;继而通过GPX4-配体结合自由能计算分析筛选,发现artemisinin(ARS)、patuletin、kaempferol与阳性对照物1d4(PKUMDL-LC-101-D03)的作用方式相似;最后,进行分子动力学模拟。结果显示:ARS、patuletin、kaempferol、阳性对照物1d4可与GPX4形成稳定性较强的复合物。
    Abstract: Glutathione peroxidase 4(GPX4) is a selenoprotein that can specifically catalyze the conversion of glutathione from lipid peroxides to lipid alcohols. Up-regulation of GPX4 expression plays an important role in inhibiting ferroptosis and related inflammation. In order to screen out the potential active small molecules that can activate glutathione peroxidase 4(GPX4) from Artemisia annua, 126 active small molecules of Artemisia annua were firstly retrieved from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform and 50 active small molecules of Artemisia annua were screened out according to drug-like properties. Further, 8 active small molecules of Artemisia annua were screened out through GPX4-ligand docking simulation and GPX4-ligand inte-raction pattern. Analysis and screening with GPX4-ligand free binding energy calculation found that artemisinin, patuletin and kaempferol acted similarly to the positive control 1d4(PKUMDL-LC-101-D03). Finally, molecular dynamics simulation was performed. The results showed that artemisinin, patuletin, kaempferol and the positive control 1d4 can form a stable complex with GPX4.
  • 图  1   GPX4的活性口袋图

    Figure  1.   The active SiteMap of GPX4

    图  2   GPX4的SiteMap分析

    注:图中连贯条状为GPX4二级结构,而无规则曲面为其活性口袋,其中红色区域代表氢键受体结构,紫色区域代表氢键供体结构,黄色区域为疏水结构。

    Figure  2.   The SiteMap analysis of GPX4

    图  3   阳性对照物1d4、patuletin、kaempferol、ARS在活性口袋的作用方式

    Figure  3.   The mode of action of the positive control 1d4, patuletin, kaempferol and ARS in the active pocket of GPX4

    图  4   配体在对接口袋的稳定性分析

    Figure  4.   The stability analysis of ligands in the docking pocket

    图  5   分子动力模拟蛋白-配体作用方式

    注:作用方式持续时间占比=作用方式持续时间/50 ns。

    Figure  5.   The molecular dynamics simulating protein-ligand interaction

    表  1   配体在GPX4活性口袋内的作用方式

    Table  1   The mode of action of the ligand in the active pocket of GPX4

    化合物 结构式 Docking score/(kcal/mol) 经典氢键 碳氢键 范德华力 盐桥 疏水作用
    1d4 -5.140 PHE100、LYS31、
    ASP21、ASP23
    HIS25 ILE22、VAL27、LYS99、
    MET102
    ASP21、
    ASP23
    HIS25、LYS90、
    ALA93、ALA94、
    VAL98、ASP101
    ARS -4.896 MET102 LYS90、
    PHE100
    ASP21、ILE22、ALA93、
    LYS99、ASP101
    ALA94、VAL98
    patuletin -5.858 ASP21、ASP23、
    LYS31、VAL98、
    ASP101
    ILE22、HIS25、VAL27、
    LYS90、ALA93、ALA94、
    LYS99、MET102
    kaempferol -6.384 ASP21、ASP23、
    LYS31、VAL98、
    ASP101
    ILE22、HIS25、LYS90、
    LYS99、PHE100、MET102
    isofraxidin -5.201 ASP101、MET102 LYS99 ASP21、ILE22、ASP23、
    LYS90、ALA93、ALA94、
    VAL98、LYS99、PHE100
    naringenin -5.661 ASP21、LYS90 ILE22、ASP23、VAL27、
    LYS31、ALA93、ALA94、
    VAL98、LYS99、PHE100、
    ASP101、MET102
    LYS90
    naringenin -5.269 ASP31、LYS90 ILE22、ASP23、HIS25、
    VAL27、LYS31、ALA93、
    ALA94、VAL98、LYS99、
    PHE100、ASP101、MET102
    LYS90
    apigenin -5.272 LYS31、VAL98 ASP21、ILE22、ASP23、
    HIS25、VAL27、LYS90、
    LYS99、PHE100、ASP101、
    LYS31、MET102、
    PHE103
    quercetin -5.767 ASP21、LYS90、
    ASP101
    ILE22、ASP23、HIS25、
    VAL27、LYS31、TYR32、
    ALA93、ALA94、VAL98、
    LYS99、MET102
    LYS90
    注:“—”表示该化合物不存在此作用方式。
    下载: 导出CSV

    表  2   配体在GPX4复合物体系的结合自由能

    Table  2   The MM-GBSA free energy of ligands bound to GPX4  kcal/mol

    化合物 ΔGbinda ΔGbindvdWb ΔGbind Coulombc ΔGbind Lipod ΔGbind Covalente ΔGbind Hbondf ΔGbind solvGBg
    1d4 -42.655 -36.868 -17.917 -9.142 1.615 -3.000 22.657
    ARS -33.703 -31.396 -5.863 -5.122 0.368 0.519 7.791
    patuletin -38.922 -25.133 -31.058 -7.826 2.540 -4.441 26.996
    kaempferol -36.081 -25.176 -22.284 -8.290 1.472 -3.424 21.621
    isofraxidin -25.993 -28.539 -4.734 -6.832 2.139 -0.951 12.924
    naringenin -30.814 -24.539 -28.194 -4.372 5.761 -2.333 22.863
    naringenin -29.521 -22.923 -27.887 -4.152 5.712 -2.067 21.796
    apigenin -20.291 -32.466 -8.470 -6.174 4.839 -0.934 22.914
    quercetin -30.952 -28.077 -20.063 -6.383 3.591 -2.597 22.577
    注:表中化合物的结构顺序与表 1一致。a表示自由结合能;b表示范德华力对自由结合能的影响;c表示共价键能对自由结合能的影响;d表示亲脂性结合能对自由结合能的影响;e表示库伦能对自由结合能的影响;f表示氢键键能对自由结合能的影响;g表示静电溶剂化能对自由结合能的影响。
    下载: 导出CSV
  • [1] 郭周义, 刘智明. 氧化石墨烯: 一种用于癌症诊断与治疗的新型纳米试剂[J]. 华南师范大学学报(自然科学版), 2014, 46(4): 1-11. doi: 10.6054/j.jscnun.2014.06.101

    GUO Z Y, LIU Z M. oxide: a new nano reagent for cancer diagnosis and treatment[J]. Journal of South China Normal University(Natural Science Edition), 2014, 46(4): 1-11. doi: 10.6054/j.jscnun.2014.06.101

    [2]

    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. A Cancer Journal for Clinicians, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [3]

    CHOUGOUO R D, NGUEKEU Y M, DZOYEM J P, et al. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of Artemisia annua growing in Cameroon[J]. Springerplus, 2016, 5(1): 1525/1-7.

    [4] 梅胜兰, 夏中元, 孟庆涛, 等. 细胞铁死亡发生机制的研究进展[J]. 医学综述, 2020, 26(21): 4207-4211. doi: 10.3969/j.issn.1006-2084.2020.21.010

    MEI S L, XIA Z Y, MENG Q T, et al. Research progress on the mechanism of cell iron death[J]. Medical Review, 2020, 26(21): 4207-4211. doi: 10.3969/j.issn.1006-2084.2020.21.010

    [5] 程洁, 陆军, 王章桂. 铁死亡在肿瘤治疗中的研究进展[J]. 中华肿瘤防治杂志, 2020, 27(19): 1598-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL202019014.htm

    CENG J, LU J, WANG Z G. Research progress of iron death in tumor treatment[J]. Chinese Journal of Cancer Prevention and Treatment, 2020, 27(19): 1598-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL202019014.htm

    [6] 孙晟杰, 涂画, 唐励静, 等. 铁死亡诱导剂和抑制剂的研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(8): 623-633. doi: 10.3867/j.issn.1000-3002.2020.08.010

    SUN S J, TU H, TANG L J, et al. Research progress of iron death inducers and inhibitors[J]. Chinese Journal of Pharmacology and Toxicology, 2020, 34(8): 623-633. doi: 10.3867/j.issn.1000-3002.2020.08.010

    [7] 关鹏, 石振华, 李亚青, 等. 铁死亡: 一种新的细胞死亡方式[J]. 生物化学与生物物理进展, 2013, 40(2): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW201302005.htm

    GUAN P, SHI Z H, LI Y Q, et al. Ferrodeath: a new way of cell death[J]. Advances in Biochemistry and Biophy-sics, 2013, 40(2): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW201302005.htm

    [8] 周文博, 孔晨飞, 秦高伟, 等. 铁死亡发生机制的研究进展[J]. 生物化学与生物物理进展, 2018, 45(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW201801002.htm

    ZHOU W B, KONG C F, QIN G W, et al. Research progress on the mechanism of ferroptosis[J]. Advances in Biochemistry and Biophysics, 2018, 45(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW201801002.htm

    [9] 程峰, 张庸, 王祥, 等. 谷胱甘肽过氧化物酶GPX4在铁死亡中的作用与机制研究进展[J]. 现代肿瘤医学, 2021, 29(7): 1254-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202107035.htm

    CHENG F, ZHANG Y, WANG X, et al. Research progress on the role and mechanism of glutathione peroxidase GPX4 in iron death[J]. Modern Oncology Medicine, 2021, 29(7): 1254-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202107035.htm

    [10] 郭凯, 宋丽娜, 王中秋. 铁死亡机制在胰腺癌治疗中的研究进展[J]. 中华胰腺病杂志, 2021, 21(4): 306-309.

    GUO K, SONG L N, WANG Z Q. Research progress on the mechanism of ferroptosis in the treatment of pancreatic cancer[J]. Chinese Journal of Pancreatic Diseases, 2021, 21(4): 306-309.

    [11]

    SHIMADA K, USHIJIMA K, SUZUKI C, et al. Pulmonary administration of curcumin inhibits B16F10 melanoma lung metastasis and invasion in mice[J]. Cancer Chemother Pharmacol, 2018, 82(2): 265-273.

    [12]

    XU L, ZHANG Y, TIAN K, et al. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to eli-cit synergistic therapeutic effects[J]. Journal of Experimen-tal & Clinical Cancer Research, 2018, 37(1): 261/1-15.

    [13]

    TILAOUI M, MOUSE H A, JAAFARI A, et al. Differential effect of artemisinin against cancer cell lines[J]. Natural Products and Bioprospecting, 2014, 4(3): 189-196.

    [14]

    KANNAN R, KUMAR K, SAHAL D, et al. Reaction of artemisinin with haemoglobin: implications for antimalarial activity[J]. Biochemical Journal, 2005, 385: 409-418.

    [15] 易仁鑫, 王歆悦, 王汉东. 青蒿素及其衍生物通过铁死亡途径发挥抗肿瘤作用的研究进展[J]. 科学技术创新, 2020(8): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202008018.htm

    YI R X, WANG X Y, WANG H D. Research progress of artemisinin and its derivatives to exert anti-tumor effects through iron death pathway[J]. Innovation in Science and Technology, 2020(8): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202008018.htm

    [16]

    LI C, DENG X B, ZHANG W L, et al. Novel allosteric activators for Ferroptosis Regulator Glutathione Peroxidase 4[J]. Journal of Medicinal Chemistry, 2019, 62(1): 266-275.

  • 期刊类型引用(1)

    1. 姚琴, 谢柏臻, 裴一花. 聚乙二醇-聚乙烯亚胺负载超顺磁纳米Fe_3O_4的合成及其基因转染应用. 华南师范大学学报(自然科学版). 2018(06): 48-53 . 百度学术

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  28
  • PDF下载量:  43
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-06-10
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回