The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming
-
摘要: 采用硬模板法制备比表面积大的介孔LaAl1-xNixO3钙钛矿催化剂,将其用于碳中和甲烷干重整领域,研究不同温度下的反应活性。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)、热重分析(TGA)对制备的催化剂进行表征。结果表明:LaAl0.5Ni0.5O3催化剂在反应过程中表现出了最优异的活性与稳定性。在反应温度为750 ℃,空速GHSV=36 000 mL/(g·h)的反应条件下, CH4与CO2的转化率分别达到69.8%和81.5%,经25 h稳定性测试后CH4与CO2的转化率仅分别降低2.7%和3.3%。这是由于在H2-Ar混合气还原过程中,LaAl0.5Ni0.5O3催化剂获得了比LaAl0.7Ni0.3O3催化剂更多的Ni活性位点,同时获得了比LaAl0.3Ni0.7O3催化剂更优异的抗烧结、抗积碳性能。Abstract: The hard template method was used to prepare the mesoporous LaAl1-xAlxO3 perovskite catalyst with a large surface area, which was used for carbon-neutral methane dry reforming for reaction activity test at different temperatures. With scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), N2 adsorption and desorption (BET), H2 temperature programmed reduction (H2-TPR), thermogravimetric analysis (TGA) and other methods, the as-prepared catalyst was characterized. The results showed that the LaAl0.5Ni0.5O3 catalyst exhibited the most excellent activity and stability during the reaction, the initial activity of CH4 and CO2 in the LaAl0.5Ni0.5O3 catalyst reached 69.8% and 81.5% respectively under the conditions of reaction temperature of 750 ℃ and space velocity GHSV=36 000 mL/(g·h). And the CH4 and CO2 activity of the LaAl0.5Ni0.5O3 catalyst reduced by 2.7% and 3.3% respectively after the 25 h stability test. The reason was that the LaAl0.5Ni0.5O3 catalyst obtained more Ni active sites than the LaAl0.7Ni0.3O3 catalyst and the LaAl0.5Ni0.5O3 catalyst had more favorable anti-sintering and anti-carbon deposition ability than the LaAl0.3Ni0.7O3 catalyst.
-
-
表 1 不同样品的物理性质
Table 1 The physical characteristics of different samples
样品 比表面积/(m2·g-1) 孔容积/(cm3·g-1) 孔径/nm D0/nm D1/nm LaAlO3-C 5.3 0.041 30.5 — — LaAlO3 137.1 0.274 8.0 — — LaAl0.7Ni0.3O3 98.3 0.288 11.7 13.5 — LaAl0.5Ni0.5O3 93.7 0.251 10.7 14.2 15.5 LaAl0.3Ni0.7O3 85.6 0.223 10.4 17.8 21.6 注:D0为LaAl1-xNixO3钙钛矿还原后的Ni粒径; D1为LaAl1-xNixO3钙钛矿稳定性测试后的Ni粒径。 表 2 LaAl0.5Ni0.5O3催化剂与各种同类催化剂的性能比较
Table 2 The performance of various catalysts for methane dry reforming
样品 气体组分 GHSV/(mL·g-1·h-1) T/℃ 转化率/% t/h 来源 CH4 CO2 La(Co0.1Ni0.9)0.5Fe0.5O3 V(CH4)∶V(CO2)=1∶1 12 000 750 70 80 30 [25] La0.4Ce0.6Ni0.5O0.5O3 V(CH4)∶V(CO2)=1∶1 12 000 750 62 72 25 [26] 10%NiO/MgO V(CH4)∶V(CO2)=1∶1 30 000 750 63 75 30 [27] Ni-ATP@Ce V(CH4)∶V(CO2)=1∶1 18 000 700 58 74 6 [28] LaAl0.5Ni0.5O3 V(CH4)∶V(CO2)∶V(N2)=25∶25∶10 36 000 750 69 81 25 本文 注:空速(GHSV): 反应气体每小时通过每克催化剂的体积。 -
[1] 李风雷, 尹璐, 赵吉, 等. 以能源转型推进"碳中和"的北欧经验借鉴与中国方案初探[J]. 可再生能源, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005 LI F L, YIN L, ZHAO J, et al. The nordic experiences and Chinese choices for improving "Carbon Neutrality" by energy transition[J]. Renewable Energy Resources, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005
[2] 卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
[3] SINGH R, DHIR A, MOHAPATRA S, et al. Dry reforming of methane using various catalysts in the process: review[J]. Biomass Convers and Biorefinery, 2020, 10(2): 567-587. doi: 10.1007/s13399-019-00417-1
[4] MOREIRA T, FILHO J, CARVALHO Y, et al. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane[J]. Fuel, 2021, 287: 119536/1-10. https://www.sciencedirect.com/science/article/pii/S0016236120325321
[5] ANIL C, MODAK J M, MADRAS G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst[J]. Molecular Catalysis, 2019, 484: 110805/1-11. https://www.sciencedirect.com/science/article/pii/S1226086X13002190
[6] PAN C, GUO Z L, DAI H, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16133-16143. doi: 10.1016/j.ijhydene.2020.04.066
[7] QIN Z Z, CHEN J, XIE X L, et al. CO2 reforming of CH4 to syngas over nickel-based catalysts[J]. Environmental Chemistry Letters, 2020, 18(4): 997-1017. doi: 10.1007/s10311-020-00996-w
[8] BHATTAR S, ABEDIN M A, KANITKAR S, et al. A review on dry reforming of methane over perovskite derived catalysts[J]. Catalysis Today, 2021, 365: 2-23. doi: 10.1016/j.cattod.2020.10.041
[9] RUAN Y Z, ZHAO Y F, LU Y, et al. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming[J]. Microporous and Mesoporous Materials, 2020, 303: 110278/1-43.
[10] RIVAS I, ALVAREZ J, PIETRI E, et al. Perovskite-type oxides in methane dry reforming: effect of their incorporation into a mesoporous SBA-15 silica-host[J]. Catalysis Today, 2009, 149 (3): 388-393. https://www.sciencedirect.com/science/article/pii/S0920586109003459
[11] NAIR M M, KALIAGUINE S, KLEITZ F, et al. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts[J]. ACS Catalysis, 2014, 4 (11): 3837-3846. doi: 10.1021/cs500918c
[12] SONG J W, DUAN X H, ZHANG W W. Methane dry reforming over mesoporous La2O3 supported Ni catalyst for syngas production[J]. Microporous and Mesoporous Materials, 2021, 310: 110587/1-8.
[13] BAI X L, XIE G M, GUO Y, et al. A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane[J]. Catalysis Today, 2021, 368: 78-85. doi: 10.1016/j.cattod.2019.12.033
[14] LEE G, KIM I, YANG I, et al. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane[J]. Applied Surface Science, 2018, 429: 55-61. doi: 10.1016/j.apsusc.2017.08.092
[15] WANG Z J, WANG H, LIU Y, et al. La1-xCaxFe1-xCoxO3, a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen[J]. RSC Advances, 2013, 3(25): 10027-10036. doi: 10.1039/c3ra23487h
[16] WANG N, YU X P, WANG Y, et al. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier[J]. Catalysis Today, 2013, 212: 98-107. doi: 10.1016/j.cattod.2012.07.022
[17] LU Y, GUO D, RUAN Y Z, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J]. Journal of CO2 Utilization, 2018, 24: 190-199. doi: 10.1016/j.jcou.2018.01.003
[18] SAGAR T V, PADMAKAR D, LINGAIAH N, et al. Syngas production by CO2 reforming of methane on LaNixAl1-xO3 perovskite catalysts: influence of method of preparation[J]. Journal of Chemical Sciences, 2017, 129 (11): 1787-1794. doi: 10.1007/s12039-017-1359-2
[19] WANG N, SHEN K, HUANG L, et al. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas[J]. ACS Catalysis, 2013, 3 (7): 1638-1651. doi: 10.1021/cs4003113
[20] TAHERIAN Z, KHATAEE A, OROOJI Y. Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters[J]. Journal of the Energy Institute, 2021, 97, 100-108. doi: 10.1016/j.joei.2021.04.005
[21] CHEN C F, MENG Z J, WANG Z J. Large specific surface area macroporous nanocast LaFe1-xNixO3: a stable catalyst for catalytic methane dry reforming[J]. Journal of Chemistry, 2019, 2019: 1-9. https://www.hindawi.com/journals/jchem/2019/7851416/
[22] Li Z W, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance[J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c8cy00024g#!
[23] ZHANG Q, SUN M, NING P, et al. Effect of thermal induction temperature on re-dispersion behavior of Ni nanoparticles over Ni/SBA-15 for dry reforming of methane[J]. Applied Surface Science, 2019, 469: 368-377. doi: 10.1016/j.apsusc.2018.10.222
[24] CHEN X, YIN L, LONG K, et al. The reconstruction of Ni particles on SBA-15 by thermal activation for dry reforming of methane with excellent resistant to carbon deposition[J]. Journal of the Energy Institute, 2020, 93(6): 2255-2263. doi: 10.1016/j.joei.2020.06.008
[25] WANG H Q, DONG X L, ZHAO T T, et al. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(CoxNi1-x)0.5Fe0.5O3 perovskite precursor: catalytic activity and coking resistance[J]. Applied Catalysis B: Environmental, 2019, 245: 302-313. doi: 10.1016/j.apcatb.2018.12.072
[26] WANG M, ZHAO T T, DONG X L, et al. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2018, 224: 214-221. doi: 10.1016/j.apcatb.2017.10.022
[27] JAFARBEGLOO M, TARLANI A, MESBATH W A, et al. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: the influence of active metal content on catalytic performance[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1165-1173. doi: 10.1016/j.jngse.2015.09.065
[28] DAI H, YU P X, LIU H S, et al. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction[J]. New Journal of Chemistry, 2020, 44 (37): 16101-16109. doi: 10.1039/D0NJ03069D
[29] LI L, ZHANG L M, SHI X F, et al. Carbon dioxide reforming of methane over nickel catalysts supported on mesoporous MgO[J]. Journal of Porous Materials, 2014, 21(2): 217-224. doi: 10.1007/s10934-013-9766-3
[30] ZHANG Q L, WANG J, NING P, et al. Dry reforming of methane over Ni/SBA-15 catalysts prepared by homogeneous precipitation method[J]. Korean Journal of Chemical Engineering, 2017, 34 (11): 2823-2831. doi: 10.1007/s11814-017-0182-2
-
期刊类型引用(2)
1. 郭贺媛熙,李利军,冯军,林鑫,李睿. 基于DNA杂交指示剂和银纳米棒阵列芯片构建氯霉素SERS适配体传感器的研究. 光谱学与光谱分析. 2023(11): 3445-3451 . 百度学术
2. 赵倩雯,李南希,陈琳琳,李红. 亚甲基蓝介导抗坏血酸氧化动力学的研究. 华南师范大学学报(自然科学版). 2018(06): 25-30 . 百度学术
其他类型引用(0)