度量G-空间中G-强链回归点集的动力学性质

冀占江

冀占江. 度量G-空间中G-强链回归点集的动力学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034
引用本文: 冀占江. 度量G-空间中G-强链回归点集的动力学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034
JI Zhanjiang. The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034
Citation: JI Zhanjiang. The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034

度量G-空间中G-强链回归点集的动力学性质

基金项目: 

广西自然科学基金项目 2020JJA110021

梧州学院校级重点项目 2020B007

详细信息
    通讯作者:

    冀占江,Email:1395954261@qq.com

  • 中图分类号: O189.11

The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space

  • 摘要: 在拓扑群作用下的度量空间中研究了G-强链回归点集的拓扑结构和特征,得到G-强链回归点集的若干结论:(1)设(X, d)是紧致度量G-空间,G是紧致的拓扑群,f: XX连续,则SCRG(f)是闭集; (2)设(X, d)是紧致度量G-空间,G是紧致的拓扑群,f: XX同胚伪等价,则f(SCRG(f))=SCRG(f); (3)设(X, d)是紧致度量G-空间,f: XX同胚伪等价且度量d对群G不变,则SCRG(f)=SCRG(f-1)。
    Abstract: The topological structure and characteristics of G-strong chain regression point set are studied in the metric space under topological group action and some conclusions of G-strong chain regression point set are obtained: (1) Let (X, d) be a compact metric G-space, G be a compact topological group, and f: XX be a continuous map; then the set SCRG(f) is a closed set; (2) Let (X, d) be a compact metric G-space, G be a compact topological group, and f: XX be an homeomorphic pseudoequivalent map; then f(SCRG(f))=SCRG(f); (3) Let(X, d)be a compact metric G-space, f: XX be an homeomorphic pseudoequivalent map and the metric d be invariant to group G; then SCRG(f)=SCRG(f-1).
  • [1]

    LUO X F, NIE X X, YIN J D. On the shadowing property and shadowable point of set-valued dynamical systems[J]. Acta Mathematica Sinica, 2020, 36(12): 1384-1394. doi: 10.1007/s10114-020-9331-3

    [2]

    WANG H Y, LIU Q. Ergodic shadowing properties of ite-rated function systems[J]. Bulletin of the Malaysian Ma-thematical Sciences Society, 2020, 44(2): 767-783.

    [3]

    WU X X, ZHANG X, MA X. Various shadowing in linear dynamical systems[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1-10.

    [4]

    KANG B, KOO N, LEE M. On the average shadowing pro-perty in linear dynamical systems[J]. Journal of the Chung-cheong Mathematical Society, 2018, 31(1): 167-175.

    [5] 汪火云, 曾鹏. 平均伪轨的部分跟踪[J]. 中国科学: 数学, 2016, 46(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201606002.htm

    WANG H Y, ZENG P. Partial shadowing of average pseudo-orbits[J]. Scientific Sinica: Mathematica, 2016, 46(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201606002.htm

    [6] 冀占江. 乘积空间与拓扑群作用下逆极限空间的动力学性质[D]. 南宁: 广西大学, 2014.

    JI Z J. Dynamical property of product space and the inverse limit space of a topological group action[D]. Nanning: Guangxi University, 2014.

    [7] 孟鑫, 刘岩. 非自治离散动力系统的强跟踪性[J]. 吉林师范大学学报(自然科学版), 2016, 37(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXK201603017.htm

    MENG X, LIU Y. The strongly shadowing property of the nonautonomous dynamical systems[J]. Journal of Jilin Normal University(Natural Science Edition), 2016, 37(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXK201603017.htm

    [8]

    LI Z P, ZHOU Y H. Quasi-shadowing and limit quasi-shadowing for quasi-partially hyperbolic strings of flows[J]. Journal of Differential Equations, 2020, 269(12): 11062-11085. doi: 10.1016/j.jde.2020.07.030

    [9]

    KRYZHEVICH S G, PIYUGIN S Y. Inverse shadowing and related measures[J]. Science China: Mathematics, 2020, 63(9): 1825-1836. doi: 10.1007/s11425-019-1609-8

    [10]

    LEE M. Orbital shadowing property on chain transitive sets for generic diffeomorphisms[J]. Acta Universitatis Sapientiae: Mathematica, 2020, 12(1): 146-154. doi: 10.2478/ausm-2020-0009

    [11] 赵俊玲. 强链回归集与强跟踪性[J]. 数学研究, 2004, 37(3): 286-291. doi: 10.3969/j.issn.1006-6837.2004.03.010

    ZHAO J L. Strong chain recurrent sets and strong shadowing property[J]. Journal of Mathematical Study, 2004, 37(3): 286-291. doi: 10.3969/j.issn.1006-6837.2004.03.010

    [12] 冀占江. 度量空间中强链回归点集的研究[J]. 西南师范大学学报(自然科学版), 2019, 44(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201902008.htm

    JI Z J. On strong chain recurrent point set in metric space[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201902008.htm

    [13] 冀占江, 张更容, 涂井先. 强跟踪性和强链回归点集的研究[J]. 河南大学学报(自然科学版), 2019, 49(6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201906013.htm

    JI Z J, ZHANG G R, TU J X. The research of strong sha-dowing property and strong chain recurrent point set[J]. Journal of Henan University(Natural Science), 2019, 49(6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201906013.htm

    [14] 李晓婷. 紧致度量空间上连续自映射的一些链回归性质[D]. 南宁: 广西大学, 2015.

    LI X T. Some chain recurrent properties of continuous self-maps on compact metric space[D]. Nanning: Guangxi University, 2015.

    [15]

    AHMADI S A. Invariants of topological G-conjugacy on G-Spaces[J]. Mathematica Moravica, 2014, 18(1): 67-75. doi: 10.5937/MatMor1401067A

    [16]

    CHOI T, KIM J. Decomposition theorem on G-spaces[J]. Osaka Journal of Mathematics, 2009, 46(1): 87-104.

  • 期刊类型引用(2)

    1. 郭贺媛熙,李利军,冯军,林鑫,李睿. 基于DNA杂交指示剂和银纳米棒阵列芯片构建氯霉素SERS适配体传感器的研究. 光谱学与光谱分析. 2023(11): 3445-3451 . 百度学术
    2. 赵倩雯,李南希,陈琳琳,李红. 亚甲基蓝介导抗坏血酸氧化动力学的研究. 华南师范大学学报(自然科学版). 2018(06): 25-30 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  284
  • HTML全文浏览量:  62
  • PDF下载量:  58
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-04-23
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回