留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学模拟探索乳克鲁维酵母来源的β-半乳糖苷酶热变性条件

曹锟 王若男 熊兴东 吴赟 刘新光

曹锟, 王若男, 熊兴东, 吴赟, 刘新光. 分子动力学模拟探索乳克鲁维酵母来源的β-半乳糖苷酶热变性条件[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 70-75. doi: 10.6054/j.jscnun.2022028
引用本文: 曹锟, 王若男, 熊兴东, 吴赟, 刘新光. 分子动力学模拟探索乳克鲁维酵母来源的β-半乳糖苷酶热变性条件[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 70-75. doi: 10.6054/j.jscnun.2022028
CAO Kun, WANG Ruonan, XIONG Xingdong, WU Yun, LIU Xinguang. The Thermal Denaturation Conditions of β-galactosidase in Kluyveromyces lactis under Molecular Dynamics Simulation[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 70-75. doi: 10.6054/j.jscnun.2022028
Citation: CAO Kun, WANG Ruonan, XIONG Xingdong, WU Yun, LIU Xinguang. The Thermal Denaturation Conditions of β-galactosidase in Kluyveromyces lactis under Molecular Dynamics Simulation[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 70-75. doi: 10.6054/j.jscnun.2022028

分子动力学模拟探索乳克鲁维酵母来源的β-半乳糖苷酶热变性条件

doi: 10.6054/j.jscnun.2022028
基金项目: 

国家自然科学基金项目 82002104

国家自然科学基金项目 81971329

广东省基础与应用基础研究基金项目区域联合基金-青年基金项目 2019A1515110659

广东省医学科学技术研究基金项目 A2020381

广东医科大学博士学位人员科研启动基金项目 B2019018

广东医科大学科研基金自然科学类面上培育项目 GDMUM2020016

广东医科大学学科建设项目 4SG21008G

详细信息
    通讯作者:

    吴赟,Email:wuyun@gdmu.edu.cn

    刘新光,Email:xgliu@gdmu.edu.cn

  • 中图分类号: Q518.4

The Thermal Denaturation Conditions of β-galactosidase in Kluyveromyces lactis under Molecular Dynamics Simulation

  • 摘要: 为了研究乳克鲁维酵母中β-半乳糖苷酶可能的熔解温度,采用分子动力学模拟的方法,分别对4种不同温度条件下(35、50、65、80 ℃)的β-半乳糖苷酶进行了50 ns的计算模拟,分析了酶的构象变化以及酶活性中心的差异。研究在原子水平揭示了β-半乳糖苷酶的温度耐受等关键信息:35 ℃为最适酶活温度,该温度下的β-半乳糖苷酶的整体构象最稳定;该酶在50 ℃时的原子波动性显著增加,表明此温度可能趋近熔解温度临界值;蛋白在大于65 ℃条件下丧失柔性,说明蛋白已经变性;进一步的构象分析发现80 ℃高温会破坏β-D-半乳吡喃糖(GAL)结合位点微环境。
  • 图  1  β-半乳糖苷酶结构及其模拟体系构型展示

    Figure  1.  The β-galactosidase structure and its simulation system configuration

    图  2  模拟过程中β-半乳糖苷酶整体的波动性展示

    Figure  2.  The overall fluctuation of β-galactosidase in the simulation process

    图  3  温度对β-半乳糖苷酶溶剂可及表面积的影响

    Figure  3.  The effect of temperature on accessible surface area of β-galactosidase solvent

    图  4  温度对β-半乳糖苷酶二级结构及其与GAL分子结合能力的影响

    Figure  4.  The effect of temperature on the secondary structure of β-galactosidase and its binding ability to GAL

  • [1] 秦燕, 宁正祥, 胡新宇. 固定化β-半乳糖苷酶催化生成低聚半乳糖[J]. 食品与发酵工业, 2001, 27(11): 12-16. doi: 10.3321/j.issn:0253-990X.2001.11.004

    QIN Y, NING Z X, HU X Y. Synthesis of galacto-oligosaccharides with immobilized β-galactosidase[J]. Food and Fermentation Industry, 2001, 27(11): 12-16. doi: 10.3321/j.issn:0253-990X.2001.11.004
    [2] PANESAR P S, PANESAR R, SINGH R S, et al. Microbial production, immobilization and applications of β-D-galactosidase[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 2010, 81(4): 530-543.
    [3] PARK A R, OH D K. Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus[J]. Applied Microbiology & Biotechnology, 2010, 85(5): 1427-1435.
    [4] GROSS S. A family of at least seven β-galactosidase genes is expressed during tomato fruit development[J]. Plant Physiology, 2000, 123(3): 1173-1183. doi: 10.1104/pp.123.3.1173
    [5] SCHMIDT B F, ADAMS R M, REQUADT C, et al. Expression and nucleotide sequence of the Lactobacillus bulgaricus beta-galactosidase gene cloned in Escherichia coli[J]. Journal of Bacteriology, 1989, 171(2): 625-635. doi: 10.1128/jb.171.2.625-635.1989
    [6] LI J J, ZHANG W, WANG C, et al. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice[J]. Applied Microbiology & Biotechnology, 2012, 96(6): 1499-1506.
    [7] NICHELE V, SIGNORETTO M, GHEDINI E. β-Galactosidase entrapment in silica gel matrices for a more effective treatment of lactose intolerance[J]. Journal of Molecular Catalysis B Enzymatic, 2011, 71(1/2): 10-15.
    [8] 陈昆松, 张上隆, ROSS G S. β-半乳糖苷酶基因在猕猴桃果实成熟过程的表达[J]. 植物生理与分子生物学学报, 2000, 26(2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200002006.htm

    CHEN K S, ZHANG S L, ROSS G S. Expression pattern of β-galactosidase gene in ripening actinidia chinensis fruit[J]. Journal of Plant Physiology and Molecular Biology, 2000, 26(2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200002006.htm
    [9] 关博洋, 殷菲胧, 刘云芬, 等. 贮藏温度对采后龙眼果实糖代谢及其相关酶活性的影响[J]. 食品工业科技, 2022, 43(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202205043.htm

    GUAN B Y, YIN F L, LIU Y F, et al. Effects of storage temperature on sugar metabolism and related enzyme activities of postharvest longan fruits[J]. Science and Technology of Food Industry, 2022, 43(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202205043.htm
    [10] LUDIKHUYZE L, LOEY A V, INDRAWATI, et al. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects[J]. Critical Reviews in Food Science and Nutrition, 2003, 43(5): 527-586. doi: 10.1080/10408690390246350
    [11] KARASOVÁ P, KRÁLOVÁ B, RUSSELL N J. Beta-ga-lactosidase activity in psychrotrophic microorganisms and their potential use in food industry[J]. Czech Journal of Food Sciences, 2002, 20(2): 43-47.
    [12] 张莉, 李庆章, 田雷. β-半乳糖苷酶研究进展[J]. 东北农业大学学报, 2009, 40(7): 128-131. doi: 10.3969/j.issn.1005-9369.2009.07.027

    ZHANG L, LI Q Z, TIAN L. Research progress of β-ga-lactosidase[J]. Journal of Northeast Agricultural University, 2009, 40(7): 128-131. doi: 10.3969/j.issn.1005-9369.2009.07.027
    [13] CAO K, LI N, WANG H, et al. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc[J]. Journal of Biological Chemistry, 2018, 293(16): 6075-6089. doi: 10.1074/jbc.M117.818997
    [14] 秦兰霞, 徐德昌, 王荣春. 大肠杆菌异源重组蛋白质的变性与复性[J]. 生物信息学, 2005(3): 127-129. doi: 10.3969/j.issn.1672-5565.2005.03.009

    QIN L X, XU D C, WANG R C. Denaturation and renatu-ration of alien recombinant proteins in E. coli[J]. Chinese Journal of Bioinformatics, 2005(3): 127-129. doi: 10.3969/j.issn.1672-5565.2005.03.009
    [15] DILL K A, SHORTLE D. Denatured states of proteins[J]. Annual Review of Biochemistry, 1991, 60(1): 795-825. doi: 10.1146/annurev.bi.60.070191.004051
    [16] RAIKOS V, DUTHIE G, RANAWANA V. Denaturation and oxidative stability of hemp seed (Cannabis sativa L. ) protein isolate as affected by heat treatment[J]. Plant Foods for Human Nutrition, 2015, 70(3): 304-309. doi: 10.1007/s11130-015-0494-5
    [17] HALABI A, CROGUENNEC T, BOUHALLAB S, et al. Modification of protein structures by altering the whey protein profile and heat treatment affects in vitro static digestion of model infant milk formulas[J]. Food Function, 2020, 11(8): 6933-6945. doi: 10.1039/D0FO01362E
    [18] CAO K, ZHANG J, MIAO X Y, et al. Evolution and molecular mechanism of PitAs in iron transport of Streptococcus species[J]. Journal of Inorganic Biochemistry, 2018, 182(5): 113-123.
    [19] 周仲华, 张达, 倪贺, 等. 生物信息学筛选催化茶黄素合成的多酚氧化酶[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 59-67. http://journal-n.scnu.edu.cn/article/id/4115

    ZHOU Z H, ZHANG D, NI H, et al. Bioinformatic screening of natural polyphenol oxidases for theaflavins synthesis[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 59-67. http://journal-n.scnu.edu.cn/article/id/4115
    [20] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
    [21] 王健, 应晓, 刘海洋. 5, 15-二(五氟苯基)-10-(2-氨基苯基)金属咔咯的二阶非线性光学性质[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 31-40. doi: 10.6054/j.jscnun.2020024

    WANG J, YING X, LIU H Y. Second-order nonlinear optical properties of 5, 15-bis(pentafluorophenyl)-10-(2-aminophenyl) metal corrole[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(2): 31-40. doi: 10.6054/j.jscnun.2020024
    [22] SURVE S S, MAHONEY R R. Thermostabilization of Kluyveromyces marxianus β-galactosidase by histidine: physical studies[J]. Biotechnology and Applied Biochemistry, 1996, 23(2): 155-162.
    [23] TE J A, DONG M, MILLER L J, et al. Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists[J]. Journal of Computer-Aided Molecular Design, 2012, 26(7): 835-845.
  • 加载中
图(4)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  24
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回