王晓慧, 李雪, 赫文豪, 卢贵武, 周广刚, 陈君青, 赵格, 王宁. 电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 18-23. DOI: 10.6054/j.jscnun.2022021
引用本文: 王晓慧, 李雪, 赫文豪, 卢贵武, 周广刚, 陈君青, 赵格, 王宁. 电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 18-23. DOI: 10.6054/j.jscnun.2022021
WANG Xiaohui, LI Xue, HE Wenhao, LU Guiwu, ZHOU Guanggang, CHEN Junqing, ZHAO Ge, WANG Ning. Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 18-23. DOI: 10.6054/j.jscnun.2022021
Citation: WANG Xiaohui, LI Xue, HE Wenhao, LU Guiwu, ZHOU Guanggang, CHEN Junqing, ZHAO Ge, WANG Ning. Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 18-23. DOI: 10.6054/j.jscnun.2022021

电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究

Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain

  • 摘要: 为了有效捕获和分离CO2,提出了一种电荷与应变协同调控的气体捕获和渗透的新方法,该方法具有可逆性和动力学可控的优点。采用分子动力学(MD)模拟和基于第一性原理密度泛函理论(DFT)计算,分析了不同电荷密度和拉伸应变控制下的多孔g-C9N7纳米片对CO2捕获和渗透的影响规律。通过电荷调控策略,CO2分子渗透率高达5.94×107 GPU(即0.019 899 mol/(s·Pa·m2))。另外,CO2渗透率随拉伸应变率的增加而增大,拉伸应变率为7.5%的g-C9N7薄膜的最大渗透率为3.61×107 GPU(即0.012 094 mol/(s ·Pa ·m2))。在此基础上,采用负电荷与应变工程相结合的方法研究二者的协同效应,在负电荷为1 e、拉伸应变率为3.0%的条件下,CO2渗透率达到3.18×107 GPU(即0.001 065 mol/(s ·Pa ·m2))。此时CO2渗透率是仅施加1 e时CO2渗透率的9倍,是仅添加3.0%应变率时CO2渗透率的8倍。研究结果为开发具有CO2捕获和分离高度可控的高性能材料提供了理论指导。

     

    Abstract: In order to promote the development of new materials and technologies to effectively capture and separate CO2, a new charge-and strain-controlled gas capture and permeation method is proposed, which has the advantages of reversibility and controllable dynamics. The molecular dynamics (MD) simulation and first-principles density function (DFT) calculation are used to analyze the effects of CO2 capture and penetration on porous g-C9N7 nanosheets with different charge densities and stress controls. Through charge regulation, the molecular permeance of CO2 can reach 5.94×107 GPU (0.019 899 mol/(s·Pa·m2)). Under tensile strain conditions, the CO2 permeance increases with the increase of tensile strain, and the maximum permeance of 7.5% tensile strain rate g-C9N7 membrane is 3.61×107 GPU(0.012 094 mol/(s ·Pa ·m2)). More interestingly, a feasible way is explored to combine negative charge with strain engineering to study synergistic effects. When the negative charge is 1 e and the tensile strain rate is 3.0%, the CO2 permeability reaches 3.18×107 GPU(0.001 065 mol/(s ·Pa ·m2)), which is 9 times of that when only 1 e is added and 8 times of that when only 3.0% is added. These results provide useful guidance for the development of advanced materials with highly controllable CO2 capture and separation properties.

     

/

返回文章
返回