退极化场对Ba0.5 Sr0.5 TiO3外延薄膜的铁电和介电性能的影响

张宪贵, 那木拉, 宋建民, 杨帆

张宪贵, 那木拉, 宋建民, 杨帆. 退极化场对Ba0.5 Sr0.5 TiO3外延薄膜的铁电和介电性能的影响[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 7-12. DOI: 10.6054/j.jscnun.2022019
引用本文: 张宪贵, 那木拉, 宋建民, 杨帆. 退极化场对Ba0.5 Sr0.5 TiO3外延薄膜的铁电和介电性能的影响[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 7-12. DOI: 10.6054/j.jscnun.2022019
ZHANG Xiangui, NA Mula, SONG Jianmin, YANG Fan. The Effect of Depolarization Field on Ferroelectric and Dielectric Properties of Ba0.5Sr0.5TiO3 Epitaxial Thin Films[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 7-12. DOI: 10.6054/j.jscnun.2022019
Citation: ZHANG Xiangui, NA Mula, SONG Jianmin, YANG Fan. The Effect of Depolarization Field on Ferroelectric and Dielectric Properties of Ba0.5Sr0.5TiO3 Epitaxial Thin Films[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 7-12. DOI: 10.6054/j.jscnun.2022019

退极化场对Ba0.5 Sr0.5 TiO3外延薄膜的铁电和介电性能的影响

基金项目: 

河北省教育厅青年基金项目 QN2018001

河北省创新创业专项 S202110086039

河北省高等学校科技专项 ZD2020181

详细信息
    通讯作者:

    张宪贵,Email: lxzhxg@hebau.edu.cn

  • 中图分类号: O469

The Effect of Depolarization Field on Ferroelectric and Dielectric Properties of Ba0.5Sr0.5TiO3 Epitaxial Thin Films

  • 摘要: 基于Ginzburg-Landau-Devonshire唯象理论,定性研究了在有或无退极化场情形下外延Ba0.5Sr0.5TiO3薄膜的铁电和介电性能随厚度的依赖特性。结果表明:与无退极化场相比,退极化场的存在使薄膜极化强度空间分布更均匀,抑制了系统的平均极化强度,降低了相变温度(ΔTc),但增加了临界厚度(Δhc、Δhm)和调谐率(Δφ),尤其在电极弱补偿情况下更加显著,厚度为100 nm时薄膜的ΔTc、Δhc、Δhm和Δφ分别约为-57.5 ℃、15 nm、40 nm和20%;外延薄膜的介电性能取决于极化强度对外加电场的响应能力,而非极化本身,这一观点可从完全相反的极化强度和调谐率厚度依赖性趋势充分证明。
    Abstract: Based on the Ginzburg-Landau-Devonshire phenomenological theory, the thickness-dependent ferroelectric and dielectric properties with and without depolarization field in epitaxial Ba0.5Sr0.5TiO3 films were qualitatively studied. The results show that, compared with non-depolarization field, depolarization field makes the spatial distribution of polarization more uniform and inhibits the average polarization of the system, with the phase transition temperature (ΔTc) reduced but the critical thickness (Δhc, Δhm), and tunability (Δφ) increased, especially in the case of weak electrode compensation. With the 100-nm-thickness thin film, the values of ΔTc、Δhc、Δhm and Δφ are about -57.5 ℃, 15 nm, 40 nm and 20%, respectively. Moreover, the dielectric properties of epitaxial films depend on the ability of polarization to respond to external applied electric field rather than polarization itself, which can be fully proved by the completely opposite trends of thickness-dependent polarization and tunability.
  • 图  1   平均极化强度随厚度的变化

    Figure  1.   The change of mean polarization with thickness

    图  2   100 nm厚度薄膜的极化强度分布

    Figure  2.   The spatial distribution of 100-nm-thickness film polarization

    图  3   不同退极化场条件下薄膜的相变特性

    Figure  3.   The phase transition characteristics of thin films under different depolarization fields

    图  4   调谐率、零场介电常数随厚度的变化

    Figure  4.   The change of tunability and zero electric field dielectric constant with thickness

    表  1   BST 50/50薄膜计算参数

    Table  1   The calculation parameters for BST 50/50 film

    参数 结果
    T/K 298
    Tc/K 235
    a1/(C-2·m2·N) 9.1(T-Tc)×105
    a11/(C-4·m6·N) 4[796+2.16(T-273)]×106
    (S11+S12)/(m2·N-1) 3.29×10-12
    Q12/(m4·C-2) -2.75×10-2
    D/(V·m5·C-3) 0.9×10-9
    下载: 导出CSV
  • [1]

    KWAMEN C, ROESSLE M, LEITENBERGER W, et al. Time-resolved X-ray diffraction study of the structural dynamics in an epitaxial ferroelectric thin Pb(Zr0.2Ti0.8)O3 film induced by sub-coercive fields[J]. Applied Physics Letters, 2019, 114(16): 162907/1-5.

    [2]

    CHEN Z F, WANG Y D, ZHENG D F, et al. Polarization tunable and enhanced photovoltaic properties in tetragonal-like BiFeO3 epitaxial films with graphene top electrode[J]. Journal of Alloys and Compounds, 2019, 811(30): 152013/1-6.

    [3]

    LIU Y, INFANTE I C, LOU X, et al. Giant room-temperature elastocaloric effect in ferroelectric ultrathin films[J]. Advanced Materials, 2014, 26(35): 6132-6137. doi: 10.1002/adma.201401935

    [4] 陈文烁, 孟耀勇, 顾凤龙. 钛酸锶钡拉曼光谱的理论计算与实验研究[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 18-23. doi: 10.6054/j.jscnun.2019098

    CHEN W S, MENG Y Y, GU F L. Theoretical and experimental studies of roman spectroscopy of barium strontium titanate[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 18-23. doi: 10.6054/j.jscnun.2019098

    [5]

    ZHANG Q A, XIAO X D, WANG J, et al. Effects of epitaxial strain, film thickness and electric-field frequency on the ferroelectric behavior of BaTiO3 nano films[J]. International Journal of Solids and Structures, 2018, 144/145: 32-45. doi: 10.1016/j.ijsolstr.2018.04.012

    [6]

    LICHTENSTEIGER C, TRISCONE J M, JUNQUERA J, et al. Ferroelectricity and tetragonality in ultrathin PbTiO3 films[J]. Physical Review Letters, 2005, 94: 047603/1-4.

    [7]

    HONG L, SOH A K, SONG A K, et al. Interface and surface effects on ferroelectric nano-thin films[J]. Acta Materialia, 2008, 56(13): 2966-2974. doi: 10.1016/j.actamat.2008.02.034

    [8]

    ZHONG W L, WANG C L, ZHANG P L, et al. Phenomenological study of the size effect on phase transitions in ferroelectric particles[J]. Physical Review B, 1994, 50: 698-703.

    [9]

    WANG J, ZHANG T Y. Influence of depolarization field on polarization states in epitaxial ferroelectric thin films with nonequally biaxial misfit strains[J]. Physical Review B, 2008, 77(1): 014104/1-7.

    [10]

    MANTESE J V, ALPAY S P. Graded ferroelectrics, transpacitors and transponents[M]. New York: Springer, 2005.

    [11]

    MA W, ZHONG J, JIAN W. Curie phase transition and critical size for ferroelectricity in strained ultrathin PbTiO3 and BaTiO3: a phenomenological study[J]. Ferroelectrics, 2017, 507(1): 86-101. doi: 10.1080/00150193.2017.1283554

    [12]

    LIU G, NAN C W. Thickness dependence of polarization in ferroelectric perovskite thin films[J]. Journal of Physics D: Applied Physics, 2005, 38(4): 584-589. doi: 10.1088/0022-3727/38/4/010

    [13]

    HU Z S, TANG M H, WANG J B, et al. Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films[J]. Physica B: Condensed Matter, 2008, 403(19/20): 3700-3704.

    [14]

    GLINCHUK M D, ZAULYCHNY B Y, STEPHANOVICH V A. Depolarization field in thin ferroelectric films with account of semiconductor electrodes[J]. Ferroelectrics: Letters Section, 2005, 316(11): 1-6.

    [15]

    KIM H J, OH S H, JANG H M. Thermodynamic theory of stress distribution in epitaxial Pb(Zr, Ti)O3 thin films[J]. Applied Physics Letters, 1999, 75(20): 3195-3197. doi: 10.1063/1.125275

    [16]

    WANG X S, WANG C L, ZHONG W L, et al. The effects of uniaxial stress distribution on the ferroelectric properties of thin films with first-order phase transition[J]. Solid State Communications, 2002, 121(2/3): 111-115.

    [17]

    ZHOU H, HONG J W, ZHANG Y L, et al. Flexoelectricity induced increase ofcritical thickness in epitaxial ferroelectric thin films[J]. Physica B: Condensed Matter, 2012, 407(17): 3377-3381. doi: 10.1016/j.physb.2012.04.041

    [18]

    MA D C, ZHENG Y, WOO C H. Phase-field simulation of domain structure for PbTiO3/SrTiO3 superlattices[J]. Acta Materialia, 2009, 57(16): 4736-4744. doi: 10.1016/j.actamat.2009.06.032

    [19]

    PALOVA L, CHANDRA P, RABE K M. Modeling the dependence of properties of ferroelectric thin film on thickness[J]. Physical Review B, 2007, 76(1): 014112/1-12.

    [20]

    SINNAMON L J, BOWMAN R M, GREGG J M. Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors[J]. Applied Phy-sics Letters, 2002, 81(5): 889-891. doi: 10.1063/1.1496144

    [21]

    ZEMBILGOTOV A G, PERTSEV N A, KOHLSTEDT H, et al. Ultrathin epitaxial ferroelectric films grown on compressive substrates: competition between the surface and strain effects[J]. Journal of Applied Physics, 2002, 91(4): 2247-2247. doi: 10.1063/1.1427406

    [22]

    TAGANTSEV A K, SHERMAN V O, ASTAFIEV K F, et al. Ferroelectric materials for microwave tunable applications[J]. Journal of Electroceramics, 2003, 11(1/2): 5-66. doi: 10.1023/B:JECR.0000015661.81386.e6

    [23]

    JIAN Z, YIN Z, ZHANG M S. Phase structures and stability in barium titanate ferroelectric ultrathin films[J]. Physics Letters A, 2003, 310(5/6): 479-485.

    [24]

    GLINCHUK M D, ELISEEV E A, STEPHANOVICH V A. The depolarization field effect on the thin ferroelectric films properties[J]. Physica B, 2002, 322(3/4): 356-370.

    [25]

    BAN Z G, ALPAY S P. Optimization of the tunability of barium strontium titanate films via epitaxial stresses[J]. Journal of Applied Physics, 2003, 93(1): 504-511. doi: 10.1063/1.1524310

    [26]

    BAN Z G, ALPAY S P. Phase diagrams and dielectric response of epitaxial barium strontium titanate films: a theoretical analysis[J]. Journal of Applied Physics, 2002, 91(11): 9288-9296. doi: 10.1063/1.1473675

    [27]

    ITO S, YAMADA T, TAKAHASHI K, et al. Effect of bottom electrode on dielectric property of sputtered-(Ba, Sr) TiO3 films[J]. Journal of Applied Physics, 2009, 105(1): 061606/1-4.

  • 期刊类型引用(3)

    1. 刘婧怡,蒋雅萌,冯伟,郑凤,许新华. 自愈合离子凝胶的制备及传感测试. 大学化学. 2022(05): 304-310 . 百度学术
    2. 郭媛媛,蒋洪伟,袁冬,唐彪,周国富. 电润湿显示材料与器件技术研究进展. 液晶与显示. 2022(08): 925-941 . 百度学术
    3. 刘丽明,闫航瑞. 氯化钠液滴在特氟龙表面润湿行为的电控调节研究. 传感器与微系统. 2021(02): 38-40+43 . 百度学术

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  227
  • PDF下载量:  136
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-11-17
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回