王京南, 郭永权, 殷林瀚, 赵兴, 郭新鹏, 解娜娜. Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
引用本文: 王京南, 郭永权, 殷林瀚, 赵兴, 郭新鹏, 解娜娜. Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
WANG Jingnan, GUO Yongquan, YIN Linhan, ZHAO Xing, GUO Xinpeng, XIE Nana. The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
Citation: WANG Jingnan, GUO Yongquan, YIN Linhan, ZHAO Xing, GUO Xinpeng, XIE Nana. The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018

Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质

The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor

  • 摘要: 采用真空电弧熔炼技术制备Cu1-xCoxInTe2(Co元素掺杂比x=0, 0.1, 0.2, 0.3)稀磁半导体。利用X射线衍射仪(XRD)、振动样品磁强计(VSM)和紫外可见近红外分光光度计(UV-Vis-NIR)分别表征样品的晶体结构、磁学性质和光学性质。研究表明:4种稀磁半导体中主相均为Cu1-xCoxInTe2,具有四方结构,空间群为I42d。掺杂的Co原子与Cu原子共同占据4a(0, 0, 0)晶位,In原子占据4b(0, 0, 1/2)晶位,Te原子占据8d(x, 1/4, 1/8)晶位。Cu1-xCoxInTe2呈现室温铁磁性,其室温磁化遵循Langevin模型,随着x的增加,其饱和磁化强度增大。调控Co掺杂量,可以提高Cu1-xCoxInTe2稀磁半导体的光吸收带宽Eg,使其具有太阳能光伏材料的应用可能性。

     

    Abstract: The diluted magnetic semiconductors Cu1-xCoxInTe2 (Co doping ratio x=0, 0.1, 0.2, 0.3) was synthesized through vacuum arc melting. X-ray diffractometer (XRD), vibrating sample magnetometer(VSM), and UV-Vis-NIR spectrometer were used to investigate their crystal structures and magnetic and optical properties, respectively. The main phases of Cu1-xCoxInTe2 crystalline has tetragonal structure with a space group of I42d. The atomic occupations are 4a(0, 0, 0) for Co and Cu atoms, 4b(0, 0, 1/2) for In and 8d(x, 1/4, 1/8) for Te, respectively. Cu1-xCoxInTe2 shows room temperature ferromagnetic characteristics, and their field dependence of magnetization follows a Langevin model. Their saturation magnetization increases with increased x. The bandgaps of Cu1-xCoxInTe2 can be adjusted by controlling the doping amount of Co, which makes possible its potential application as photovoltaic material.

     

/

返回文章
返回