Loading [MathJax]/jax/output/SVG/jax.js

Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质

王京南, 郭永权, 殷林瀚, 赵兴, 郭新鹏, 解娜娜

王京南, 郭永权, 殷林瀚, 赵兴, 郭新鹏, 解娜娜. Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
引用本文: 王京南, 郭永权, 殷林瀚, 赵兴, 郭新鹏, 解娜娜. Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
WANG Jingnan, GUO Yongquan, YIN Linhan, ZHAO Xing, GUO Xinpeng, XIE Nana. The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
Citation: WANG Jingnan, GUO Yongquan, YIN Linhan, ZHAO Xing, GUO Xinpeng, XIE Nana. The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018

Cu1-x Cox InTe2稀磁半导体的制备及磁学、光学性质

基金项目: 

国家重点研发项目 2018YFB0905600

详细信息
    通讯作者:

    郭永权,Email: yqguo@ncepu.edu.cn

  • 中图分类号: TB34

The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor

  • 摘要: 采用真空电弧熔炼技术制备Cu1-xCoxInTe2(Co元素掺杂比x=0, 0.1, 0.2, 0.3)稀磁半导体。利用X射线衍射仪(XRD)、振动样品磁强计(VSM)和紫外可见近红外分光光度计(UV-Vis-NIR)分别表征样品的晶体结构、磁学性质和光学性质。研究表明:4种稀磁半导体中主相均为Cu1-xCoxInTe2,具有四方结构,空间群为I42d。掺杂的Co原子与Cu原子共同占据4a(0, 0, 0)晶位,In原子占据4b(0, 0, 1/2)晶位,Te原子占据8d(x, 1/4, 1/8)晶位。Cu1-xCoxInTe2呈现室温铁磁性,其室温磁化遵循Langevin模型,随着x的增加,其饱和磁化强度增大。调控Co掺杂量,可以提高Cu1-xCoxInTe2稀磁半导体的光吸收带宽Eg,使其具有太阳能光伏材料的应用可能性。
    Abstract: The diluted magnetic semiconductors Cu1-xCoxInTe2 (Co doping ratio x=0, 0.1, 0.2, 0.3) was synthesized through vacuum arc melting. X-ray diffractometer (XRD), vibrating sample magnetometer(VSM), and UV-Vis-NIR spectrometer were used to investigate their crystal structures and magnetic and optical properties, respectively. The main phases of Cu1-xCoxInTe2 crystalline has tetragonal structure with a space group of I42d. The atomic occupations are 4a(0, 0, 0) for Co and Cu atoms, 4b(0, 0, 1/2) for In and 8d(x, 1/4, 1/8) for Te, respectively. Cu1-xCoxInTe2 shows room temperature ferromagnetic characteristics, and their field dependence of magnetization follows a Langevin model. Their saturation magnetization increases with increased x. The bandgaps of Cu1-xCoxInTe2 can be adjusted by controlling the doping amount of Co, which makes possible its potential application as photovoltaic material.
  • 稀磁半导体材料是自旋电子通讯领域研究的热点之一,通过同时调控电荷和电子自旋,可使信息的处理和储存高度集成,在磁存储器、磁感应器、光隔离器、半导体集成电路、半导体激光器和自旋量子计算机等领域有广阔的应用前景[1-3]。当磁性离子注入半导体后会产生强的局域自旋磁矩,可调控载流子的电输运行为,诱导自旋相关的磁光特性和磁运输性质[4]

    稀磁半导体的研究始于20世纪80年代,主要研究集中于微量3d磁性离子(如Mn2+)掺杂的Ⅱ A-ⅥA和ⅢA-VA稀磁半导体,其中,Ⅲ A-Ⅴ A GaAs ∶ Mn和InAs ∶ Mn稀磁半导体具有代表性[5-6],利用Mn与GaAs、InAs的自旋-电子相互作用,使其产生磁性、磁光和磁电现象,通过调控磁性可以改变其电光特性[7]。同时,Co元素掺杂的氧化物半导体自旋调制的电子运输特性引起了国内外学者的广泛关注[8-12]。目前多数磁性半导体的居里温度均低于室温[13],虽然少数体系能够达到室温,但是其磁性机制争议很大,因此,提高稀磁半导体的居里温度、探索新的磁性半导体材料仍然是半导体自旋电子学研究领域活跃的研究热点。

    黄铜矿结构的Ⅰ-Ⅲ-Ⅵ2和Ⅱ-Ⅳ-Ⅴ 2半导体是继Ⅱ-Ⅵ或Ⅲ-Ⅴ半导体之后的又一研究热点, 但是两者关注的重点不同。Ⅱ-Ⅳ-Ⅴ 2半导体是由Ⅲ-Ⅴ半导体衍生的,Ⅱ族和Ⅳ族元素共同替代Ⅲ族元素形成的Ⅱ-Ⅳ-Ⅴ 2型半导体,研究者对CdGeP2的研究兴趣仍然是探索新型稀磁半导体。通过3d过渡金属磁性离子的掺杂,使Ⅱ-Ⅳ-Ⅴ 2半导体产生磁性。通过调节磁性离子的掺杂比,实现半导体的磁性由无序向有序的转变,从而形成铁磁性。目前发现一些具有室温铁磁性的稀磁半导体(如(Ⅱ, Mn)GeP2(Ⅱ =Zn, Cd)[14-16]),但是磁性离子诱导的磁性很复杂,室温下铁磁性与抗磁性并存[15]。对于CuIn0.9CexCo0.1-xTe2半导体材料,Co和Ce的掺杂可使CuInTe2系列半导体由反铁磁性向铁磁性转变[17]。CuIn1-xCoxSe2通过Co掺杂后表现为超顺磁性,且磁矩随Se—In(Co)键长的增长以及In(Co)—Se—In(Co)键角的减小而增大[18]。Mn掺杂后CuIn1-xMnxTe2室温下表现为顺磁性,Co微量掺杂后CuIn1-xCoxTe2在室温低磁场下表现为铁磁性[19]。由于现有研究大多在In位和Te/Se位掺杂不同元素,而在Cu位掺杂磁性元素的研究较少,因此,本文基于现有磁性元素掺杂CuInTe2的研究,对Cu位掺杂,以期获得性能更加优良的磁电子材料。由于单质Co具有强磁性和高居里温度,采用少量Co原子替代Cu,制备室温铁磁性Cu1-xCoxInTe2(Co掺杂比x=0, 0.1, 0.2, 0.3)稀磁半导体,研究其晶体结构、磁学性质及光学性质。

    实验原料选取纯度大于99.9%的Cu、Co、In和Te,按化学式Cu1-xCoxInTe2(Co的掺杂比x=0, 0.1, 0.2, 0.3)进行配料,其中Te的沸点较低,易挥发,所以添加质量分数为10%的Te作为补偿。采用非自耗真空电弧熔炼炉,在高纯氩气保护氛围中反复熔炼得到成分均匀的铸锭,将铸锭密封在充有氩气的石英管中,并在450 ℃下保温30 d,最后在冷水中淬火。

    采用X射线衍射仪(XRD, Rigaku D/Max 2500X, 日本理学)进行物相分析,用TREOR程序对衍射峰的2θ进行指标化[20],采用Rietveld全谱拟合法对衍射数据进行结构精修[21]

    采用振动样品磁强计(VSM)测量样品在室温下的磁化曲线,外加磁场强度的范围为0~30 kOe。利用Langevin模型对磁化曲线进行拟合[22]

    M=Nμ(cothμHkBTkBTμH), (1)

    其中,M为磁化强度,N为原子个数,μ为原子磁矩,H为外磁场强度,kB为波尔兹曼常数,T为温度,为饱和磁化强度(MS)。

    使用紫外可见近红外分光光度计(LAMBDA 1050)测定样品的吸收光谱,进而通过Tauc关系[23](光子能量与禁带宽度之间的关系)确定材料的禁带宽度Eg。Tauc关系式:

    αhν=A(hνEg)n, (2)

    其中,α为吸收系数,h为普朗克常数,ν为光频率,A为依赖于电子-空穴迁移率的常数[24]n是与半导体类型相关的常数。

    直接迁跃型半导体材料的n取1/2,光子能量和禁带宽度之间的关系:

    (αhν)2=A2(hνEg) (3)

    采用外推法对(αhν)2~曲线的线性部分进行拟合,求拟合线与()轴的交点即可得到材料的禁带宽度[25-26]

    Cu1-xCoxInTe2(x=0, 0.1, 0.2, 0.3)稀磁半导体的XRD图谱如图 1所示,4种稀磁半导体中主相均为Cu1-xCoxInTe2,杂相为InTe相。应用TREOR程序对每个样品主相衍射峰的2θ进行指标化。表 1为Cu0.8Co0.2InTe2的指标化结果,所有衍射峰均被指标化,de Woff品质因子(M)和Smith可信度因子(F)均大于10表明结果可信。表 2为Cu1-xCoxInTe2的主相指标化所得的点阵常数,并将点阵常数作为Rietveld精修的初始结构参数。

    图  1  Cu1-xCoxInTe2(x=0, 0.1, 0.2, 0.3)稀磁半导体的XRD图谱
    Figure  1.  The XRD patterns of Cu1-xCoxInTe2(x=0, 0.1, 0.2, 0.3) diluted magnetic semiconductors
    表  1  Cu0.8Co0.2InTe2衍射峰的指标化结果
    Table  1.  The index-results of diffraction peaks in Cu0.8Co0.2InTe2
    h k l sin2θ实验值 sin2θ计算值 2θ实验值 2θ计算值
    1 1 2 0.046 334 0.046 318 24.861 24.857
    1 0 3 0.050 145 0.050 108 25.880 25.870
    2 0 0 0.061 841 0.061 838 28.799 28.798
    2 1 3 0.111 966 0.111 946 39.098 39.094
    2 2 0 0.123 564 0.123 676 41.160 41.180
    3 0 1 0.143 007 0.142 985 44.440 44.436
    3 1 2 0.170 001 0.169 994 48.700 48.699
    3 2 3 0.235 612 0.235 622 58.077 58.079
    4 0 0 0.247 283 0.247 352 59.640 59.649
    2 1 7 0.265 932 0.265 941 62.087 62.088
    4 1 1 0.266 789 0.266 661 62.198 62.181
    3 1 6 0.293 302 0.293 190 65.582 65.568
    3 2 5 0.297 133 0.297 220 66.063 66.074
    3 0 7 0.327 838 0.327 779 69.859 69.852
    4 2 4 0.370 780 0.370 788 75.022 75.023
    5 0 1 0.390 275 0.390 337 77.323 77.331
    注:M(18)=36,F(18)=22。
    下载: 导出CSV 
    | 显示表格
    表  2  Cu1-xCoxInTe2稀磁半导体中主相点阵常数及晶胞体积
    Table  2.  The lattice constants and cell volumes of main phase in Cu1-xCoxInTe2 diluted semiconductors magnetic
    参数 CuInTe2 Cu0.9Co0.1InTe2 Cu0.8Co0.2InTe2 Cu0.7Co0.3InTe2
    a/nm 0.619 2(1) 0.619 1(9) 0.619 5(1) 0.619 2(0)
    c/nm 1.240 6(1) 1.240 6(3) 1.241 4(4) 1.240 7(4)
    V/nm3 0.475 657 0.475 503 0.476 425 0.475 695
    F 32(17) 19(16) 36(18) 18(18)
    M 19(17) 11(16) 22(18) 12(18)
    下载: 导出CSV 
    | 显示表格

    采用Rietveld全谱拟合分析方法对其XRD图谱进行逐点比较拟合,因为杂峰强度很弱,所以只对主相Cu1-xCoxInTe2进行精修。Cu0.8Co0.2InTe2的结构精修计算值与实验值吻合良好(图 2)。Cu1-xCoxInTe2的晶体学参数如表 3所示,其中剩余因子RP以及加权剩余因子RWP已达到最优。结果表明:Cu1-xCoxInTe2中主相为四方结构,空间群为I42d,点阵常数a=0.619 1(3)~0.619 3(4) nm, c=1.240 7(0)~1.241 2(9) nm, 晶胞体积V=0.475 5(9)~0.476 1(4) nm3,结构精修的点阵常数与指标化结果基本吻合。Co原子与Cu原子共同占据4a(0, 0, 0)晶位,In原子占据4b(0, 0, 1/2)晶位,Te原子占据8d(x, 1/4, 1/8)晶位。

    图  2  Cu0.8Co0.2InTe2的XRD精修图谱
    Figure  2.  The refined XRD pattern of Cu0.8Co0.2InTe2
    表  3  Cu1-xCoxInTe2稀磁半导体的Rietveld精修结果
    Table  3.  The Rietveld-refined results of Cu1-xCoxInTe2 diluted magnetic semiconductors
    参数 CuInTe2 Cu0.9Co0.1InTe2 Cu0.8Co0.2InTe2 Cu0.7Co0.3InTe2
    a/nm 0.619 1(3) 0.619 3(4) 0.619 2(7) 0.619 2(1)
    c/nm 1.240 7(0) 1.241 2(9) 1.241 0(0) 1.240 7(1)
    V/nm3 0.475 5(9) 0.476 1(4) 0.475 9(2) 0.475 7(1)
    Cu(4a)或Co(4a)坐标 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
    In(4b)坐标 (0, 0, 1/2) (0, 0, 1/2) (0, 0, 1/2) (0, 0, 1/2)
    Te(8d)坐标 (0.225 46, 1/4, 1/8) (0.221 29, 1/4, 1/8) (0.222 29, 1/4, 1/8) (0.210 68, 1/4, 1/8)
    Rwp/% 9.919 10.877 17.463 19.919
    Rp/% 7.374 7.491 10.989 12.224
    下载: 导出CSV 
    | 显示表格

    图 3为Cu1-xCoxInTe2稀磁半导体在室温下的磁化曲线。3种Cu1-xCoxInTe2稀磁半导体在室温下均表现出铁磁性,随着Co掺杂比x的增加,Cu1-xCoxInTe2的磁化强度明显增强,说明Cu1-xCoxInTe2稀磁半导体的磁学性质对Co掺杂比非常敏感。图 3中实线为应用Langevin模型拟合的曲线,拟合值与实验值吻合良好,拟合结果列于表 4

    图  3  Cu1-xCoxInTe2(x=0.1, 0.2, 0.3)室温磁化曲线
    Figure  3.  The magnetization curves of Cu1-xCoxInTe2(x=0.1, 0.2, 0.3) at room temperature
    表  4  Cu1-xCoxInTe2在室温下的磁化曲线拟合结果
    Table  4.  The magnetization curve fitting results of Cu1-xCoxInTe2 at room temperature
    样品 MS/(emu·g-1) R2
    Cu0.9Co0.1InTe2 2.929 18±0.003 67 0.986 44
    Cu0.8Co0.2InTe2 4.044 37±0.005 68 0.982 38
    Cu0.7Co0.3InTe2 7.112 56±0.007 73 0.990 54
    下载: 导出CSV 
    | 显示表格

    结果表明:Cu1-xCoxInTe2稀磁半导体的饱和磁化强度(MS)随x的增加而增大,Co的摩尔分数每增加2.5%,试样的饱和磁化强度增大2.5 emu/g左右。Cu、In、Te均为抗磁性材料,所以CuInTe2表现为抗磁性[19]。Co掺杂后,Cu1-xCoxInTe2系列合金表现为铁磁性,可用齐纳(Zener)提出的双交换机制来解释,巡游电子延Co2+-Te-Co3+跃迁,即为Te的4p轨道上1个电子(t2g6eg0)跃迁进入Co3+空缺的eg轨道中,然后Co2+原子eg轨道上的1个电子(t2g6eg1)与4p轨道上电子自旋方向相同,跃迁进入Te原子的4p轨道中,Cu1-xCoxInTe2系列合金因此表现为铁磁性[17]。此外,在外加磁场强度较低的情况下,较弱的铁磁性表现也归因于Co原子间的自旋-自旋相互作用[18]

    测得Cu1-xCoxInTe2稀磁半导体在波长300~900 nm范围的吸收光谱(图 4),通过Tauc关系(-Eg)确定样品的禁带宽度Eg(图 5)。4种稀磁半导体的Eg分别为0.97、1.32、1.35、1.37 eV,高于CuInTe2Eg (0.96~1.04 eV)。随着Co掺杂比x的增大,Cu1-xCoxInTe2稀磁半导体的Eg增加,说明掺杂Co会拓宽CuInTe2的禁带宽度。

    图  4  Cu1-xCoxInTe2稀磁半导体的吸收光谱
    Figure  4.  The absorption spectra of Cu1-xCoxInTe2 diluted magnetic semiconductors
    图  5  Cu1-xCoxInTe2稀磁半导体的(αhν)2-()曲线
    Figure  5.  The (αhν)2-() curves of Cu1-xCoxInTe2 diluted magnetic semiconductors

    采用真空电弧熔炼方法制备了不同掺杂比x的Cu1-xCoxInTe2稀磁半导体,通过结构和物理性质表征与分析,得到以下结论:(1)Cu1-xCoxInTe2稀磁半导体中主相均为CuInTe2结构,空间群为I42d,主相中Co原子同Cu原子共同占据4a(0, 0, 0)晶位,In原子占据4b(0, 0, 1/2)晶位,Te原子占据8d(x, 1/4, 1/8)晶位;(2)由于双交换机制巡游电子Co2+-Te-Co3+跃迁和Co原子间的自旋-自旋相互作用,导致Cu1-xCoxInTe2稀磁半导体表现出室温铁磁性,并且饱和磁化强度随着磁性元素Co掺杂比x的增加而增大,使其具备了作为信息存储、磁记录稀磁半导体材料的潜能; (3)Cu1-xCoxInTe2稀磁半导体的禁带宽度范围为0.97~1.37 eV,Co元素掺杂后,使稀磁半导体的禁带宽度增大。研究表明:Co的掺杂在增强材料磁性的同时可以有效增大材料的禁带宽度。

  • 图  1   Cu1-xCoxInTe2(x=0, 0.1, 0.2, 0.3)稀磁半导体的XRD图谱

    Figure  1.   The XRD patterns of Cu1-xCoxInTe2(x=0, 0.1, 0.2, 0.3) diluted magnetic semiconductors

    图  2   Cu0.8Co0.2InTe2的XRD精修图谱

    Figure  2.   The refined XRD pattern of Cu0.8Co0.2InTe2

    图  3   Cu1-xCoxInTe2(x=0.1, 0.2, 0.3)室温磁化曲线

    Figure  3.   The magnetization curves of Cu1-xCoxInTe2(x=0.1, 0.2, 0.3) at room temperature

    图  4   Cu1-xCoxInTe2稀磁半导体的吸收光谱

    Figure  4.   The absorption spectra of Cu1-xCoxInTe2 diluted magnetic semiconductors

    图  5   Cu1-xCoxInTe2稀磁半导体的(αhν)2-()曲线

    Figure  5.   The (αhν)2-() curves of Cu1-xCoxInTe2 diluted magnetic semiconductors

    表  1   Cu0.8Co0.2InTe2衍射峰的指标化结果

    Table  1   The index-results of diffraction peaks in Cu0.8Co0.2InTe2

    h k l sin2θ实验值 sin2θ计算值 2θ实验值 2θ计算值
    1 1 2 0.046 334 0.046 318 24.861 24.857
    1 0 3 0.050 145 0.050 108 25.880 25.870
    2 0 0 0.061 841 0.061 838 28.799 28.798
    2 1 3 0.111 966 0.111 946 39.098 39.094
    2 2 0 0.123 564 0.123 676 41.160 41.180
    3 0 1 0.143 007 0.142 985 44.440 44.436
    3 1 2 0.170 001 0.169 994 48.700 48.699
    3 2 3 0.235 612 0.235 622 58.077 58.079
    4 0 0 0.247 283 0.247 352 59.640 59.649
    2 1 7 0.265 932 0.265 941 62.087 62.088
    4 1 1 0.266 789 0.266 661 62.198 62.181
    3 1 6 0.293 302 0.293 190 65.582 65.568
    3 2 5 0.297 133 0.297 220 66.063 66.074
    3 0 7 0.327 838 0.327 779 69.859 69.852
    4 2 4 0.370 780 0.370 788 75.022 75.023
    5 0 1 0.390 275 0.390 337 77.323 77.331
    注:M(18)=36,F(18)=22。
    下载: 导出CSV

    表  2   Cu1-xCoxInTe2稀磁半导体中主相点阵常数及晶胞体积

    Table  2   The lattice constants and cell volumes of main phase in Cu1-xCoxInTe2 diluted semiconductors magnetic

    参数 CuInTe2 Cu0.9Co0.1InTe2 Cu0.8Co0.2InTe2 Cu0.7Co0.3InTe2
    a/nm 0.619 2(1) 0.619 1(9) 0.619 5(1) 0.619 2(0)
    c/nm 1.240 6(1) 1.240 6(3) 1.241 4(4) 1.240 7(4)
    V/nm3 0.475 657 0.475 503 0.476 425 0.475 695
    F 32(17) 19(16) 36(18) 18(18)
    M 19(17) 11(16) 22(18) 12(18)
    下载: 导出CSV

    表  3   Cu1-xCoxInTe2稀磁半导体的Rietveld精修结果

    Table  3   The Rietveld-refined results of Cu1-xCoxInTe2 diluted magnetic semiconductors

    参数 CuInTe2 Cu0.9Co0.1InTe2 Cu0.8Co0.2InTe2 Cu0.7Co0.3InTe2
    a/nm 0.619 1(3) 0.619 3(4) 0.619 2(7) 0.619 2(1)
    c/nm 1.240 7(0) 1.241 2(9) 1.241 0(0) 1.240 7(1)
    V/nm3 0.475 5(9) 0.476 1(4) 0.475 9(2) 0.475 7(1)
    Cu(4a)或Co(4a)坐标 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
    In(4b)坐标 (0, 0, 1/2) (0, 0, 1/2) (0, 0, 1/2) (0, 0, 1/2)
    Te(8d)坐标 (0.225 46, 1/4, 1/8) (0.221 29, 1/4, 1/8) (0.222 29, 1/4, 1/8) (0.210 68, 1/4, 1/8)
    Rwp/% 9.919 10.877 17.463 19.919
    Rp/% 7.374 7.491 10.989 12.224
    下载: 导出CSV

    表  4   Cu1-xCoxInTe2在室温下的磁化曲线拟合结果

    Table  4   The magnetization curve fitting results of Cu1-xCoxInTe2 at room temperature

    样品 MS/(emu·g-1) R2
    Cu0.9Co0.1InTe2 2.929 18±0.003 67 0.986 44
    Cu0.8Co0.2InTe2 4.044 37±0.005 68 0.982 38
    Cu0.7Co0.3InTe2 7.112 56±0.007 73 0.990 54
    下载: 导出CSV
  • [1]

    DIVINCENZO D P. Quantum computation[J]. Science, 1995, 270: 255-261. doi: 10.1126/science.270.5234.255

    [2]

    OHNO Y, YOUNG D K, BESCHOTEN B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure[J]. Nature, 1999, 402: 790-792. doi: 10.1038/45509

    [3]

    BETTHAUSEN C, DOLLINGER T, SAARIKOSKI D, et al. Spin-transistor action via tunable Landau-Zener transitions[J]. Science, 2012, 337: 324-327. doi: 10.1126/science.1221350

    [4]

    HAGELE D, RUDOLPH J, DOHRMANN S, et al. Spintronics with semiconductors[C]//2004 International Conference on MEMS, Nano and Smart Systems. Alberta: IEEE Computer Society, 2004.

    [5]

    OHNO H, MUNEKATA H, PENNEYS T, et al. Magnetotransport properties of p-type(In, Mn)As diluted magne-tic Ⅲ-Ⅴ semiconductors[J]. Physical Review Letters, 1992, 68: 2664-2667. doi: 10.1103/PhysRevLett.68.2664

    [6]

    AKAI H. Ferromagnetism and its stability in the diluted magnetic semiconductor(In, Mn)As[J]. Physical Review Letters, 1998, 81: 3002-3005. doi: 10.1103/PhysRevLett.81.3002

    [7]

    KOSHIHARA S, OIWA A, HIRASAWA M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic Ⅲ-Ⅴ semiconductor heterostructures of(In, Mn)As/GaSb[J]. Physical Review Letters, 1997, 78: 4617-4620. doi: 10.1103/PhysRevLett.78.4617

    [8]

    SONG C, ZENG F, GENG K W, et al. Substrate-dependent magnetization in Co-doped ZnO insulating films[J]. Physical Review B, 2007, 76: 045215/1-8.

    [9]

    TIAN Y F, YAN S S, CAO Q, et al. Origin of large positive magnetoresistance in the hard-gap regime of epitaxial Co-doped ZnO ferromagnetic semiconductors[J]. Physical Review B, 2009, 79: 115209/1-5.

    [10]

    LI Q, SHEN T T, DAI Z K, et al. Spin polarization of Zn1-xCox O probed by magnetoresistance[J]. Applied Physical Letters, 2012, 101: 172405/1-4.

    [11]

    QI S F, QIAO Z H, DENG X Z, et al, High-temperature quantum anomalous hall effect in n-p Codoped topological insulators[J]. Physical Review Letters, 2016, 117: 056804/1-6.

    [12] 许小红, 李小丽, 齐世飞, 等. 氧化物稀磁半导体的研究进展[J]. 物理学进展, 2012, 32: 199-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ201204002.htm

    XU X H, LI X L, QI S F, et al. Recent progress in oxide based diluted magnetic semiconductors[J]. Progress in Physics, 2012, 32: 199-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ201204002.htm

    [13] 邓正, 赵侃, 靳常青. 电荷自旋注入机制分离的新型稀磁半导体[J]. 物理, 2013, 42(10): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201310001.htm

    DENG Z, ZHAO K, JIN C Q. New types of diluted magnetic semiconductors with decoupled charge and spin doping[J]. Physics, 2013, 42(10): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201310001.htm

    [14]

    CHO S, CHOI S, CHA G B, et al. Room-temperature ferromagnetism in(Zn1-xMnx)GeP2 semiconductors[J]. Physical Review Letters, 2002, 88: 257203/1-4.

    [15]

    MEDVEDKIN G A, ISHIBASHI T, NISHI T, et al. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2[J]. Japanese Journal of Applied Physicis, 2000, 39: 949-951. doi: 10.1143/JJAP.39.L949

    [16]

    MAHADEVAN P, ZUNGER A. Room-temperature ferromagnetism in Mn-doped semiconducting CdGeP2[J]. Physical Review Letters, 2002, 88: 47205/1-4.

    [17]

    WANG T, GUO Y Q, WANG C, et al. The effect of Co and Ce codoping in CuIn0.9CexCo0.1-xTe2[J]. Journal of Magnetism and Magnetic Materials, 2020, 502: 166506/1-6.

    [18]

    WANG T, GUO Y Q, WANG C, et al. Effects on magnetic properties and light absorption bandgaps of lattice distortions in CuIn1-xCoxSe2 chalcopyrites[J]. Journal of Alloys and Compounds, 2019, 774: 229-235. doi: 10.1016/j.jallcom.2018.09.072

    [19]

    GUO Y Q, LI S, WANG T, et al. Structure and magnetic properties of CuIn1-xTxTe2(T=Co, Mn)[J]. AIP Advances, 2017, 7(8): 085108/1-10.

    [20] 郭常霖, 黄月鸿, 深鹤年. TREOR多晶X射线衍射图指标化程序的适用性[J]. 硅酸盐学报, 1996(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB606.008.htm

    KUO C L, HUANG Y H, SHEN H N. Adaptability of TREOR program for indexing X-ray powder diffraction pattern of polycrystalline materials[J]. Journal of The Chinese Creamic Society, 1996(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB606.008.htm

    [21]

    LIU S, LI H, LIU J, et al. Obtaining optimal structural data from X-ray powder diffraction using the Rietveld method[J]. Powder Diffraction, 2014, 29(4): 396-403. doi: 10.1017/S0885715614000682

    [22] 郭新鹏, 郭永权, 王京南, 等. SmCo5型中熵、高熵金属间化合物的结构与磁性[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036

    GUO X P, GUO Y Q, WANG J N, et al. The structure and magnetic properties of SmCo5 type medium and high-entropy intermetallic compounds[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036

    [23]

    TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1996, 15(2): 627-637.

    [24]

    CUI J, DONG G, YANG Z, et al. Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites[J]. Journal of Alloys and Compounds, 2009, 490(1): 353-357.

    [25] 陈冬, 张漫虹, 钟美桃, 等. 镁铝共掺杂氧化锌薄膜的制备与光电性能研究[J]. 广东石油化工学院学报, 2021, 31(4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD202104016.htm

    CHEN D, ZHANG M H, ZHONG M T, et al. Preparation and optoelectronic characteristics of deposited Mg and Al Co-doped ZnO thin films[J]. Journal of Guangdong University of Petrochemical Technology, 2021, 31(4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD202104016.htm

    [26]

    KUMAR N, SINGH R K, SATYAPAL H K. Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9231-9241. doi: 10.1007/s10854-020-03454-z

图(5)  /  表(4)
计量
  • 文章访问数:  568
  • HTML全文浏览量:  208
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-24

目录

/

返回文章
返回