留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaetoglobosins E诱导乳腺癌MCF-7细胞凋亡作用机制研究

于大永 高鸿雁 曹鹤 卢轩 史丽颖

于大永, 高鸿雁, 曹鹤, 卢轩, 史丽颖. Chaetoglobosins E诱导乳腺癌MCF-7细胞凋亡作用机制研究[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 61-69. doi: 10.6054/j.jscnun.2022010
引用本文: 于大永, 高鸿雁, 曹鹤, 卢轩, 史丽颖. Chaetoglobosins E诱导乳腺癌MCF-7细胞凋亡作用机制研究[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 61-69. doi: 10.6054/j.jscnun.2022010
YU Dayong, GAO Hongyan, CAO He, LU Xuan, SHI Liying. The Effect of Chaetoglobosins E on the Proliferation and Apoptosis of MCF-7 Cells and the Related Mechanisms[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(1): 61-69. doi: 10.6054/j.jscnun.2022010
Citation: YU Dayong, GAO Hongyan, CAO He, LU Xuan, SHI Liying. The Effect of Chaetoglobosins E on the Proliferation and Apoptosis of MCF-7 Cells and the Related Mechanisms[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(1): 61-69. doi: 10.6054/j.jscnun.2022010

Chaetoglobosins E诱导乳腺癌MCF-7细胞凋亡作用机制研究

doi: 10.6054/j.jscnun.2022010
基金项目: 

辽宁省科学技术计划项目 2019-ZD-0564

大连大学优秀青年科研创新创业团队项目 XQN202004

详细信息
    通讯作者:

    史丽颖, Email: shiliying@dlu.edu.cn

  • 中图分类号: R966

The Effect of Chaetoglobosins E on the Proliferation and Apoptosis of MCF-7 Cells and the Related Mechanisms

  • 摘要: 为探究Chaetoglobosins E (ChE)对肿瘤细胞增殖和凋亡的影响,体外培养人乳腺癌MCF-7细胞、人膀胱癌T-24细胞、人黑色素瘤C8161细胞、人白血病U937细胞,用不同浓度的ChE分别作用于4种细胞24 h或48 h,MTT法检测4种肿瘤细胞的增殖情况;为进一步研究其作用机制,Hoechst 33342染色观察MCF-7经ChE处理后细胞形态的变化,流式细胞术检测MCF-7经ChE处理后细胞凋亡、周期、活性氧以及线粒体膜电位的变化情况,Western Blot法检测MCF-7细胞中凋亡相关蛋白的表达情况。结果显示:ChE对MCF-7、T-24、C8161和U937细胞增殖均有抑制作用,且均呈现出时间和剂量依赖性,4种肿瘤细胞中,ChE对MCF-7增殖的抑制效果最强,24、48 h的IC50分别为82.04±7.01、49.87±2.28 μmol/L;Hoechst 33342染色发现,随着ChE浓度的升高,凋亡的MCF-7细胞数逐渐增多,细胞凋亡特征显著,细胞核的体积缩小,细胞核裂解并伴有凋亡小体;通过流式细胞术发现,MCF-7细胞经ChE处理后, 细胞凋亡增加、细胞周期改变、活性氧增加以及线粒体膜电位降低;Western Blot实验发现,Bid、Caspase 3蛋白的表达量降低,Cleaved Caspase 3、Bax蛋白与Bcl-2蛋白表达量的比值增加。综上所述,ChE诱导的MCF-7细胞凋亡与Caspase依赖性线粒体途径有关。
  • 图  1  Chaetoglobosins E结构式

    Figure  1.  The structure of Chaetoglobosins E

    图  2  不同浓度ChE对4种肿瘤细胞24、48 h增殖的影响(x±s, n=3)

    注:与空白对照组相比,*表示P < 0.05, **表示P < 0.01,下图同。

    Figure  2.  The effects of different concentrations of ChE on the 24 h or 48 h proliferation of four kinds of tumor cells(x±s, n=3)

    图  3  不同浓度ChE对MCF-7细胞处理6 h后的细胞形态(×400)

    Figure  3.  The morphology of MCF-7 cells treated with different concentrations of ChE for 6 h (×400)

    图  4  不同浓度ChE处理MCF-7细胞12 h后的凋亡情况

    注:A图中的左下象限代表活细胞,右下象限代表早期凋亡细胞,右上象限代表晚期凋亡细胞与死细胞,左上象限代表误差。

    Figure  4.  The apoptosis of MCF-7 cells treated with ChE for 12 h

    图  5  不同浓度ChE处理MCF-7细胞4 h后细胞周期的变化

    Figure  5.  The cell cycle changes of MCF-7 cells after ChE treatment for 4 h

    图  6  不同浓度ChE处理MCF-7细胞2 h后细胞内ROS的变化

    注:A图中虚线表示该组细胞平均荧光强度。

    Figure  6.  The ROS production changes of MCF-7 cells after ChE treatment for 2 h

    图  7  不同浓度ChE处理MCF-7细胞3 h后细胞线粒体膜电位损失率的变化

    注:A图中按对照组数据确定好固定荧光强度值后,统计低于该荧光强度的总细胞数所占全部细胞百分比。

    Figure  7.  The loss of MMP changes of MCF-7 cells after ChE treatment for 3 h

    图  8  不同浓度ChE处理MCF-7细胞6 h后细胞蛋白表达量的变化

    Figure  8.  The protein expression changes of MCF-7 cells after ChE treatment for 6 h

    表  1  ChE对4种肿瘤细胞的IC50

    Table  1.   The IC50 of ChE on four kinds of tumor cells  μmol/L

    处理时间/h T24 C8161 MCF-7 U937
    24 120.70±9.88 99.05±9.97 82.04±7.01 86.64±8.61
    48 100.50±9.67 89.63±7.43 49.87±2.28 62.03±4.03
    下载: 导出CSV
  • [1] KEEGAN T H M, BLEYER A, ROSENBERG A S, et al. Second primary malignant neoplasms and survival in adolescent and young adult cancer survivors[J]. JAMA Oncology Reports, 2017, 3(11): 1554-1557. doi: 10.1001/jamaoncol.2017.0465
    [2] SRIVASTAVA S, KOAY E J, BOROWSKY A D, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma[J]. Nature Reviews Cancer, 2019, 19(6): 349-358. doi: 10.1038/s41568-019-0142-8
    [3] GÖKALP F. The inhibition effect of natural food supplement active ingredients on TP63 carcinoma cell[J]. Medical Oncology, 2020, 37(12): 1-4. https://pubmed.ncbi.nlm.nih.gov/33222005/
    [4] KICHA A A, MALYARENKO T V, KALINOVSKY A I, et al. Polar steroid compounds from the Arctic starfish Asterias microdiscus and their cytotoxic properties against normal and tumor cells in vitro[J]. Natural Product Research, 2020, 18(20): 1-8.
    [5] CAPARICA R, BRANDÃO M, PICCART M. Systemic treatment of patients with early breast cancer: recent updates and state of the art[J]. Breast, 2019, 48(Suppl 1): S7-S20.
    [6] ABD R, OUF S A, GABR M M, et al. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming[J]. Scientific Reports, 2020, 10(1): 1-11. doi: 10.1038/s41598-019-56847-4
    [7] MCS W, FDH F, LEUNG C, et al. The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection[J]. Scientific Reports, 2018, 8(1): 1-12. https://www.nature.com/articles/s41598-018-19199-z
    [8] YU X, AMBROSINI G, ROSZIK J, et al. Genetic analysis of the 'uveal melanoma' C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line[J]. Pigment Cell Melanoma Research, 2015, 28(3): 357-359. doi: 10.1111/pcmr.12345
    [9] WEITMAN E S, PEREZ M, THOMPSON J F, et al. Quality of life patient-reported outcomes for locally advanced cutaneous melanoma[J]. Melanoma Research, 2018, 28(2): 134-142. doi: 10.1097/CMR.0000000000000425
    [10] JAKAB Z, JUHASZ A, NAGY C, et al. Trends and territorial inequalities of incidence and survival of childhood leukaemia and their relations to socioeconomic status in Hungary, 1971-2015[J]. European Journal of Cancer Prevention, 2017, 26: S183-S190. doi: 10.1097/CEJ.0000000000000386
    [11] IZUTSU K, YAMAMOTO K, KATO K, et al. Phase 1/2 study of venetoclax, a BCL-2 inhibitor, in Japanese patients with relapsed or refractory chronic lymphocytic leukemia and small lymphocytic lymphoma[J]. International Journal of Hematology, 2021, 113(3): 1-11.
    [12] KNUDSEN P B, HANNA B, OHL S, et al. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton[J]. Leukemia, 2014, 28(6): 1289-1298. doi: 10.1038/leu.2013.360
    [13] CURLESS B P, UKO N E, MATESIC D F. Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells[J]. Investigational New Drugs, 2019, 37(5): 902-911. doi: 10.1007/s10637-018-0705-7
    [14] HUA C, YANG Y, SUN L, et al. Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway[J]. Immunobiology, 2013, 218(3): 292-302. doi: 10.1016/j.imbio.2012.05.015
    [15] YAN W, CAO L L, ZHANG Y Y, et al. New metabolites from endophytic fungus Chaetomium globosum CDW7[J]. Molecules, 2018, 23(11): 1-7. https://pubmed.ncbi.nlm.nih.gov/30400338/
    [16] CHEN C M, ZHU H C, WANG J P, et al. Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from chaetomium globosum TW1-1[J]. European Journal of Organic Chemistry, 2015, 14: 3086-3094.
    [17] LUO X W, GAO C H, LU H M, et al. Chaetomium globosum HPLC-DAD-guided isolation of diversified chaetoglobosins from the coral-associated fungus C2F17[J]. Molecules, 2020, 25(5): 1-9.
    [18] 赖丽梨, 靳焕, 段华英, 等. 巨噬细胞增强宫颈癌细胞对SN-38的抗性[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 63-69. doi: 10.6054/j.jscnun.2021010

    LAI L L, JIN H, DUAN H Y, et al. Macrophage's promotion of cervical cancer cell resistance to SN-38[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 63-69. doi: 10.6054/j.jscnun.2021010
    [19] LI B, GAO Y, RANKIN G O, et al. Chaetoglobosin kinduces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells[J]. Cancer Letters, 2015, 356: 418-433. doi: 10.1016/j.canlet.2014.09.023
    [20] MA Y, XIU Z, ZHOU Z, et al. Cytochalasin H inhibits angiogenesis via the suppression of HIF-1α protein accumulation and VEGF expression through PI3K/AKT/P70S6K and ERK1/2 signaling pathways in non-small cell lung cancer cells[J]. Journal of Cancer Research Clinical Oncology, 2019, 10(9): 1997-2005.
    [21] 张健明, 司徒伟勤, 宋志华, 等. 多西环素对体外人小细胞肺癌H446细胞增殖的影响及其机制[J]. 国际药学研究杂志, 2017, 44(1): 47-51.

    ZHANG J M, SITU W Q, SONG Z H, et al. Effect of doxycycline on the proliferation of human small cell lung cancer H446 cells in vitro and its mechanisms[J]. Journal of International Pharmaceutical Research, 2017, 44(1): 47-51.
    [22] MILLER K D, NOGUEIRA L, MARIOTTO A B, et al. Cancer treatment and survivorship statistics, 2019[J]. CA: A Cancer Journal for Clinicians, 2019, 69(5): 1-23.
    [23] LI S, XIE Y, YANG B, et al. MicroRNA-214 targets COX-2 to antagonize indoxyl sulfate (IS)-induced endothelial cell apoptosis[J]. Apoptosis, 2020, 25(6): 92-104.
    [24] UZDENSKY A B. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins[J]. Apoptosis, 2019, 24(Suppl 2): 1-16. doi: 10.1007/s10495-019-01556-6
    [25] LI R, JIA Z, TRUSH M A. Defining ROS in biology and medicine[J]. Reactive Oxygen Species, 2016, 1(1): 9-21. https://pubmed.ncbi.nlm.nih.gov/29707643/
    [26] ZHAO R, YU Q, HOU L, et al. Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells[J]. The International Journal of Biochemistry & Cell Biology, 2020, 121: 1-13. https://pubmed.ncbi.nlm.nih.gov/32035180/
    [27] 欧单凤, 陈春霞, 马晓冬, 等. 白藜芦醇诱导HepG2细胞凋亡中线粒体差异蛋白鉴定[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 59-63. http://journal-n.scnu.edu.cn/article/id/4126

    OU D F, CHEN C X, MA X D, et al. Analysis of mitochondrial proteome in apoptosis of HepG2 cells induced by resveratrol[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 59-63. http://journal-n.scnu.edu.cn/article/id/4126
    [28] LI D D, LUO Z, CHEN G H, et al. Identification of apoptosis-related genes Bcl2 and Bax from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to waterborne and dietborne zinc exposure[J]. Gene, 2017, 633: 1-8. doi: 10.1016/j.gene.2017.08.029
    [29] LIN Y C, LIN J F, TSAI T F, et al. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting Bcl2 in prostate cancer cells[J]. Asian Journal of Surgery, 2017, 40(5): 396-406. doi: 10.1016/j.asjsur.2016.07.001
    [30] REKHA K R, SELVAKUMAR G P. Gene expression regulation of Bcl2, Bax and cytochrome-C by geraniol on chronic MPTP/probenecid induced C57BL/6 mice model of Parkinson's disease[J]. Chemico-Biological Interactions, 2014, 217: 57-66. doi: 10.1016/j.cbi.2014.04.010
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  75
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回