基于尼龙6和聚偏氟乙烯复合隔膜的凝胶聚合物电解质

吴旭, 侯贤华

吴旭, 侯贤华. 基于尼龙6和聚偏氟乙烯复合隔膜的凝胶聚合物电解质[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006
引用本文: 吴旭, 侯贤华. 基于尼龙6和聚偏氟乙烯复合隔膜的凝胶聚合物电解质[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006
WU Xu, HOU Xianhua. The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006
Citation: WU Xu, HOU Xianhua. The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006

基于尼龙6和聚偏氟乙烯复合隔膜的凝胶聚合物电解质

基金项目: 

粤桂联合基金项目 2020A1515410008

广东省科技计划项目 2019B090905005

详细信息
    通讯作者:

    侯贤华,Email:houxianhua@m.scnu.edu.cn

  • 中图分类号: O646.21;TM911

The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane

  • 摘要: 通过连续静电纺丝法制备了具有三明治结构的尼龙6(PA6)/聚偏氟乙烯(PVDF)/尼龙6三层复合膜,并将其用作锂离子电池凝胶聚合物隔膜。通过扫描电子显微镜(SEM)观察到该隔膜由无序的纳米纤维交织而成,具有大量的相互贯通的3D孔道。用差示扫描量热法(DSC)分析了隔膜的热稳定性,其特殊的多孔三明治结构及2种材料的搭配可以有效提高锂离子电池的安全性。用复合隔膜吸收少量的六氟磷酸锂电解液(1 mol/L六氟磷酸锂溶液,碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC),质量比为1∶1∶1)得到凝胶聚合物电解质(GPE),该电解质在室温下的离子电导率达到了4.2 mS/cm,并且与电极之间有良好的的界面动力学稳定性。为了研究凝胶聚合物电解质的实用性,将其与锂片负极及商用磷酸铁锂正极材料组装成扣式电池,经测试电池表现出良好的循环性能和倍率性能。
    Abstract: The Nylon 6 (PA6)/Polyvinylidene fluoride (PVDF)/Nylon 6 (PA6) three-layer composite membrane with a sandwich structure for gel polymer electrolyte is prepared by continuous electrospinning. Scanning electron microscopy (SEM) showed that the membrane is composed of disordered nanofibers interwoven with each other, with a large number of interpenetrating 3D channels. The thermal stability of the diaphragm is analyzed with differential scanning calorimetry (DSC). The special porous sandwich structure and the combination of the two materials can effectively improve the safety of the lithium ion battery. Gel polymer electrolyte (GPE) is obtained by absorbing a small amount of lithium hexafluorophosphate electrolyte (1 mol/L LiPF6 solution, ethylene carbonate(EC)/dimethyl carbonate(DMC)/ethyl methyl carbonate(EMC), 1∶1∶1 for mass ratio) with a composite membrane. The ionic conductivity of the electrolyte reaches 4.2 mS/cm at room temperature, and the interfacial dynamic stability between the electrolyte and the electrode is good. In order to study the practicability of gel polymer electrolyte, a button battery is assembled with lithium sheet anode and commercial lithium iron phosphate cathode material. The battery shows good cycling and rate performance.
  • 图  1   不同隔膜的SEM图

    Figure  1.   The SEM images of different membranes

    图  2   不同隔膜的DSC曲线

    Figure  2.   The DSC curves of different membranes

    图  3   不同温度下的阻抗曲线

    Figure  3.   The impedance plots at different temperatures

    图  4   极化测试曲线

    Figure  4.   The voltage profile of the Li plating/stripping cycling

    图  5   极化测试前后锂金属片表面的SEM图

    Figure  5.   The SEM images of lithium plate surface before and after cycling

    图  6   电池的充/放电循环曲线

    Figure  6.   The charge/discharge curves of batteries

    图  7   电池的倍率性能

    注:GPE电池为LiFePO4/GPE/Li电池;Gelgard 2400电池为LiFePO4/Gelgard 2400/Li电池。

    Figure  7.   The rate performance of batteries

  • [1]

    GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy and Environmental Science, 2014, 7(1): 14-18. doi: 10.1039/C3EE42613K

    [2]

    THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy and Environmental Science, 2012, 5(7): 7854-7863. doi: 10.1039/c2ee21892e

    [3]

    BA LAKRISHNAN P G, RAMESH R, KUMAR T P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. doi: 10.1016/j.jpowsour.2005.12.002

    [4]

    XIN S, YOU Y, WANG S, et al. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects[J]. ACS Energy Letters, 2017, 2(6): 1385-1394. doi: 10.1021/acsenergylett.7b00175

    [5]

    KANG Y, LEE W, DONG H S, et al. Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical pro- perties[J]. Journal of Power Sources, 2003, 119(7): 448-453.

    [6]

    JUNG K N, LEE J I, JUNG J H, et al. A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid[J]. Chemical Communications, 2014, 50(41): 5458-5461. doi: 10.1039/c4cc01243g

    [7]

    ZHU X, WANG K, XU Y. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes[J]. Energy Storage Materials, 2021, 36(2): 291-308.

    [8] 张崧, 王玉海, 石光, 等. 细菌纤维素/TiO2锂离子电池复合隔膜的研究[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 21-27. doi: 10.6054/j.jscnun.2017091

    ZHANG S, WANG Y H, SHI G, et al. Study on bacterial cellulose/TiO2 composite separators for lithium-ion batteries[J]. Journal of South China normal University(Na-tural Science Edition), 2017, 49(2): 21-27. doi: 10.6054/j.jscnun.2017091

    [9]

    LUO J, FANG C C, WU N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials, 2018, 8(2): 1701482/1-7.

    [10]

    SHEN L G, FENG S S, LI J X, et al. Surface modification of polyvinylidene fluoride(PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance[J]. Scientific Reports, 2017, 7(1): 2721/1-13.

    [11]

    MUKHOPADHYAY N, PANWAR A S, KUMAR G, et al. Influence of non-covalent modification of multiwalled carbon nanotubes on the crystallization behaviour of binary blends of polypropylene and polyamide 6[J]. Physical Chemistry Chemical Physics, 2015, 17(6): 4293-4310. doi: 10.1039/C4CP05060F

    [12]

    JUNG J W, LEE C L, YU S, et al. Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review[J]. Journal of Materials Chemistry A, 2016, 4(3): 703-750. doi: 10.1039/C5TA06844D

    [13]

    PENG S J, JIN G R, LI L L, et al. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment[J]. Chemical Society Reviews, 2016, 45(5): 1225-1241. doi: 10.1039/C5CS00777A

    [14]

    FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. doi: 10.1016/j.jpowsour.2010.01.076

    [15]

    LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, 29(13): 1604460/1-13.

    [16] 胡社军, 张苗, 侯贤华, 等. 高容量型锂离子电池硅基负极材料的研究[J]. 华南师范大学学报(自然科学版), 2013, 45(6): 69-74. http://journal-n.scnu.edu.cn/article/id/3241

    HU S J, ZHANG M, HOU X H, et al. Research advances in silicon-based anode materials of high capacity lithium-ion battery[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(6): 69-74. http://journal-n.scnu.edu.cn/article/id/3241

    [17]

    KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. doi: 10.1021/ja502133j

  • 期刊类型引用(0)

    其他类型引用(9)

图(7)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  135
  • PDF下载量:  94
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-04-20
  • 网络出版日期:  2022-03-13
  • 刊出日期:  2022-02-24

目录

    /

    返回文章
    返回