广东省市域旅游联系网络结构特征及成因分析

李航飞, 唐承财

李航飞, 唐承财. 广东省市域旅游联系网络结构特征及成因分析[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 96-104. DOI: 10.6054/j.jscnun.2021098
引用本文: 李航飞, 唐承财. 广东省市域旅游联系网络结构特征及成因分析[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 96-104. DOI: 10.6054/j.jscnun.2021098
LI Hangfei, TANG Chengcai. An Analysis of the Structural Characteristics of the Tourism Contact Network in Cities of Guangdong Province and Their Causes[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 96-104. DOI: 10.6054/j.jscnun.2021098
Citation: LI Hangfei, TANG Chengcai. An Analysis of the Structural Characteristics of the Tourism Contact Network in Cities of Guangdong Province and Their Causes[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 96-104. DOI: 10.6054/j.jscnun.2021098

广东省市域旅游联系网络结构特征及成因分析

基金项目: 

教育部人文社会科学研究规划基金项目 18YJA630102

详细信息
    通讯作者:

    李航飞,Email:lihangfei1980@126.com

  • 中图分类号: F592.7;K921

An Analysis of the Structural Characteristics of the Tourism Contact Network in Cities of Guangdong Province and Their Causes

  • 摘要: 为有效促进广东省区域旅游协调发展,以2012—2018年百度指数中的网络关注度为依据,利用社会网络分析方法探讨广东省市域旅游联系的网络结构特征,并分析其形成机制. 研究结果表明:(1)广东省市域旅游联系网络密度不断增大,网络集中度不断下降,网络向均衡化方向发展. (2)广东省四大区域旅游网络联系派系结构不明显,“俱乐部”效应不显著,但在空间上呈现较为明显的“核心—边缘”结构特点;珠三角地市,特别是广州、深圳市,一直处于核心区,点度中心度高,为多维尺度(MDS)图中的第一梯队,东莞、佛山、惠州、珠海市为第二梯队,其余地市为第三梯队. (3)影响广东省市域旅游网络联系强弱的因素主要有时间距离、空间近邻效应、经济发展水平及旅游资源.
    Abstract: To effectively promote the coordinated development of regional tourism in Guangdong Province, the internet attention degree of Baidu index from 2012 to 2018 and the social network analysis method are used to study the structural characteristics of tourism contact network in cities of Guangdong Province and the mechanism for their formation. The following results are obtained. First, the density of the tourism contact network has been increasing, the concentration of the network has been declining and the network develops in the direction of equalization. Second, the factional structure of tourism networks of four regions of Guangdong Province is not obvious. Nor is the "club" effect. But the "core-edge" structure are relatively obvious. The cities in the Pearl River Delta, especially Guangzhou and Shenzhen, have always been in the core area with a high point center degree, belonging to the first echelon in the MDS chart. The cities such as Dongguan, Foshan, Huizhou and Zhuhai are in the second echelon, and the rest of the cities fall into the third echelon. Third, the main factors affecting the strength of the tourism network in Guangdong Province are time, distance, spatial neighbor effect, economic development and tourism resources.
  • 图  1   广东省各地市2012、2015、2018年的点度中心度

    Figure  1.   The point center degree of cities of Guangdong Province in 2012, 2015 and 2018

    图  2   广东省市域旅游网络联系MDS图

    Figure  2.   The MDS map of urban tourism network contact in Guangdong

    表  1   2012、2015、2018年广东省旅游网络密度及网络中心势

    Table  1   The density and concentration of tourism network of Guangdong Province in 2012, 2015 and 2018  %

    年份 网络密度 网络中心势
    2012 25.71 78.0
    2015 79.05 22.0
    2018 87.14 13.5
    下载: 导出CSV

    表  2   广东省市域旅游网络联系密度矩阵(2012、2015、2018年)

    Table  2   The density matrix of urban tourism network links in Guangdong Province in 2012, 2015 and 2018

    区域 2012 2015 2018
    珠三角 山区 东翼 西翼 珠三角 山区 东翼 西翼 珠三角 山区 东翼 西翼
    珠三角 0.694 0.267 0.222 0.259 1.000 0.978 0.889 1.000 1.000 1.000 0.972 1.000
    山区 0.267 0.000 0.000 0.000 0.978 0.200 0.350 0.400 1.000 0.400 0.500 0.667
    东翼 0.000 0.000 0.333 0.000 0.889 0.350 0.833 0.333 0.972 0.500 1.000 0.583
    西翼 0.259 0.000 0.000 0.000 1.000 0.400 0.333 1.000 1.000 0.667 0.583 1.000
    下载: 导出CSV

    表  3   广东省市域旅游网络联系像矩阵(2012、2015、2018年)

    Table  3   The image matrix of urban tourism network links in Guangdong Province in 2012, 2015 and 2018

    区域 2012 2015 2018
    珠三角 山区 东翼 西翼 珠三角 山区 东翼 西翼 珠三角 山区 东翼 西翼
    珠三角 1 1 0 1 1 1 1 1 1 1 1 1
    山区 1 0 0 0 1 0 0 0 1 0 0 0
    东翼 0 0 1 0 1 0 1 0 1 0 1 0
    西翼 1 0 0 0 1 0 0 1 1 0 0 1
    下载: 导出CSV

    表  4   核心区地市与边缘区地市分布情况(2012、2015、2018年)

    Table  4   The distribution of cities in the core district and the fringe district in 2012, 2015 and 2018

    分区 2012 2015 2018
    核心区 广州、深圳 广州、深圳 广州、深圳
    边缘区 东莞、云浮、佛山、湛江、江门、惠州、珠海、茂名、揭阳、中山、肇庆、汕头、云浮、潮州、清远、河源、汕尾 东莞、云浮、佛山、湛江、江门、惠州、珠海、茂名、揭阳、中山、肇庆、汕头、云浮、潮州、清远、河源、汕尾 东莞、云浮、佛山、湛江、江门、惠州、珠海、茂名、揭阳、中山、肇庆、汕头、云浮、潮州、清远、河源、汕尾
    模型拟合值 0.895 0.894 0.826
    下载: 导出CSV

    表  5   QAP回归分析结果

    Table  5   The result of QAP regression analysis

    变量 2015年标准化回归系数 2018年标准化回归系数
    时间距离矩阵X1 -0.312 585* -0.357 486*
    空间距离矩阵X2 0.158 985 0.144 977
    空间近邻效应矩阵X3 0.286 792*** 0.245 815***
    经济发展水平差异矩阵X4 0.282 292** 0.189 893**
    旅游资源丰度差异矩阵X5 0.348 219* 0.343 114*
    模型拟合度R2 0.439***(0.434***) 0.376***(0.370***)
    注:*、* *、* * *分别表示通过了0.05、0.01、0.001的显著性检验;括号内为调整后的R2.
    下载: 导出CSV
  • [1]

    MARROCU E, PACI R. Different tourists to different destinations: evidence from spatial interaction models[J]. Tourism Management, 2013, 39: 71-83. doi: 10.1016/j.tourman.2012.10.009

    [2]

    GUNTER U, ÖNDER I. Forecasting international city tou-rism demand for Paris: accuracy of uni- and multivariate models employing monthly data[J]. Tourism Management, 2015, 46: 123-135. doi: 10.1016/j.tourman.2014.06.017

    [3]

    SANGHOON K, GYEHEE L, JINWON K, et al. Identifying the spatial structure of the tourist attraction system in South Korea using GIS and network analysis: an application of anchor-point theory[J]. Journal of Destination Marketing & Management, 2018, 9: 358-370. http://www.sciencedirect.com/science/article/pii/S2212571X17304171

    [4]

    MIGUÉNS J I L, MENDES J F F. Travel and tourism: into a complex network[J]. Physica A, 2008, 387(12): 2963-2971. doi: 10.1016/j.physa.2008.01.058

    [5]

    SCOTT N, COOPER C, BAGGIO R. Destination networks: four Australian cases[J]. Annals of Tourism Research, 2008, 35(4): 169-188. http://www.sciencedirect.com/science/article/pii/s0160738307001028

    [6]

    SAXENA G J. Relationships, networks and the learning regions: case evidence from the Peak District National Park[J]. Tourism Management, 2005, 26: 277-289. doi: 10.1016/j.tourman.2003.11.013

    [7]

    ACAMPA G, GRASSO M, MARINO G, et al. Tourist flow management: social impact evaluation through social networks analysis[J]. Sustainability, 2020, 12(2): 1-16. http://www.researchgate.net/publication/338682507_Tourist_Flow_Management_Social_Impact_Evaluation_through_Social_Network_Analysis/download

    [8]

    SEOK H, BARNETT G A, NAM Y. A social network analysis of international tourism flow[J]. Quality & Quantity: International Journal of Methodology, 2021, 55(2): 419-439. http://ideas.repec.org/a/spr/qualqt/v55y2021i2d10.1007_s11135-020-01011-8.html

    [9] 王松茂, 徐宣国, 马江涛, 等. 新疆旅游经济网络特征的时空演变研究——基于修正的引力模型及社会网络分析[J]. 干旱区地理, 2020, 43(2): 458-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002020.htm

    WANG S M, XU X G, MA J T, et al. Spatial and temporal evolution of the tourism economy network in Xinjiang: based on modified gravity model and social network analysis[J]. Arid Land Geography, 2020, 43(2): 458-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002020.htm

    [10] 张凯, 杨效忠, 张文静. 跨界旅游区旅游经济联系度及其网络特征——以环太湖地区为例[J]. 人文地理, 2013, 128(6): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL201306021.htm

    ZHANG K, YANG X Z, ZHANG W J. Tourism economic affiliation degree network and its impacts factors of cross-border tourism region: a case study of Taihu-Lake area[J]. Human Geography, 2013, 128(6): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL201306021.htm

    [11] 刘春. 基于社会网络方法的中部地区城市群旅游空间结构研究[J]. 世界地理研究, 2015, 24(2): 167-176. doi: 10.3969/j.issn.1004-9479.2015.02.019

    LIU C. Study on the spatial structure of tourism economy in middle area of China based on social network analysis[J]. World Regional Studies, 2015, 24(2): 167-176. doi: 10.3969/j.issn.1004-9479.2015.02.019

    [12] 于洪雁, 李秋雨, 梅林. 社会网络视角下黑龙江省城市旅游经济联系的空间结构和空间发展模式研究[J]. 地理科学, 2015, 35(11): 1429-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201511012.htm

    YU H Y, LI Q Y, MEI L. Research on the spatial structure and spatial development patterns of urban tourism economic connections of Heilongjiang Province-focus on the perspective of social network[J]. Scientia Geographica Sinica, 2015, 35(11): 1429-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201511012.htm

    [13] 邹永广. "一带一路"中国主要节点城市旅游的经济联系——空间结构与合作格局[J]. 经济管理, 2017, 39(5): 22-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JJGU201705003.htm

    ZOU Y G. Research on the spatial structure and space layout of tourism economic relationship between node ci-ties of China on the "One Belt and One Road"[J]. Economic Management, 2017, 39(5): 22-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JJGU201705003.htm

    [14] 王俊, 夏杰长. 中国省域旅游经济空间网络结构及其影响因素研究——基于QAP方法的考察[J]. 旅游学刊, 2018, 33(9): 13-25. doi: 10.3969/j.issn.1002-5006.2018.09.007

    WANG J, XIA J C. Study on the spatial network structure of the tourism economy in China and its influencing factors: investigation of QAP method[J]. Tourism Tribune, 2018, 33(9): 13-25. doi: 10.3969/j.issn.1002-5006.2018.09.007

    [15] 刘法建, 张捷, 章锦河. 中国入境旅游流网络省级旅游地角色研究[J]. 地理研究, 2010, 29(6): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201006017.htm

    LIU F J, ZHANG J, ZHANG J H. Roles and functions of provincial destinations in Chinese inbound tourist flow network[J]. Geographical Research, 2010, 29(6): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201006017.htm

    [16] 王俊, 徐金海, 夏杰长. 中国区域旅游经济空间关联结构及其效应研究——基于社会网络分析[J]. 旅游学刊, 2017, 32(7): 15-26. doi: 10.3969/j.issn.1002-5006.2017.07.007

    WANG J, XU J H, XIA J C. Study on the spatial correlation structure of China's tourism economic and its effect: based on social network analysis[J]. Tourism Tribune, 2017, 32(7): 15-26. doi: 10.3969/j.issn.1002-5006.2017.07.007

    [17] 马丽君, 龙云. 基于社会网络分析法的中国省际入境旅游经济增长空间关联性[J]. 地理科学, 2017, 37(11): 1705-1711. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201711012.htm

    MA L J, LONG Y. The spatial correlation of economic growth of inbound tourism in China based on social network analysis[J]. Scientia Geographica Sinica, 2017, 37(11): 1705-1711. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201711012.htm

    [18] 陈超, 刘家明, 马海涛. 中国农民跨省旅游网络空间结构研究[J]. 地理学报, 2013, 68(4): 547-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201304013.htm

    CHEN C, LIU J M, MA H T. Spatial network structure of inter-provincial farmer tourist flows in China[J]. Acta Geographica Sinica, 2013, 68(4): 547-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201304013.htm

    [19] 刘法建, 张捷, 陈冬冬. 中国入境旅游流网络结构特征及动因研究[J]. 地理学报, 2010, 65(8): 1013-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201008014.htm

    LIU F J, ZHANG J, CHEN D D. The characteristics and dynamical factors of Chinese inbound tourist flow network[J]. Acta Geographica Sinica, 2010, 65(8): 1013-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201008014.htm

    [20] 倪维秋, 廖茂林. 高速铁路对中国省会城市旅游经济联系的空间影响[J]. 中国人口·资源与环境, 2018, 28(3): 160-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201803018.htm

    NI W Q, LIAO M L. Spatial influence of high-speed rails on the tourism economic connection of provincial cities in China[J]. China Population, Resources and Environment, 2018, 28(3): 160-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201803018.htm

    [21] 王凯, 甘畅, 杨亚萍, 等. 长江中游城市群市域旅游经济网络结构演变及其驱动因素[J]. 地理与地理信息科学, 2019, 35(5): 118-125. doi: 10.3969/j.issn.1672-0504.2019.05.019

    WANG K, GAN C, YANG Y P, et al. Evolution and dri-ving factors of urban tourism economic network structure in urban agglomeration in the middle reaches of the Yangtze River[J]. Geography and Geo-Information Science, 2019, 35(5): 118-125. doi: 10.3969/j.issn.1672-0504.2019.05.019

    [22] 虞虎, 陈田, 陆林. 江淮城市群旅游经济网络空间结构与空间发展模式[J]. 地理科学进展, 2014, 33(2): 169-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201402003.htm

    YU H, CHEN T, LU L. Structure of tourist economy network and its spatial development pattern in Jianghuai Urban Agglomeration[J]. Progress Geography, 2014, 33(2): 169-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201402003.htm

    [23] 史庆斌, 谢永顺, 韩增林, 等. 东北城市间旅游经济联系的空间结构及发展模式[J]. 经济地理, 2018, 38(11): 211-219. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201811025.htm

    SHI Q B, XIE Y S, HAN Z L, et al. Spatial structure and development patterns of urban tourism economic connections in Northeast China[J]. Economic Geography, 2018, 38(11): 211-219. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201811025.htm

    [24] 王馨, 管卫华. 江苏旅游经济联系的空间结构及其驱动机制研究[J]. 现代城市研究, 2018(10): 45-51. doi: 10.3969/j.issn.1009-6000.2018.10.006

    WANG X, GUAN W H. Research on the spatial structure and mechanism of tourism economic in Jiangsu Province[J]. Modern Urban Research, 2018(10): 45-51. doi: 10.3969/j.issn.1009-6000.2018.10.006

    [25] 陆利军, 戴湘毅. 基于百度指数的湖南旅游目的地城市旅游者网络关注度及其空间格局研究[J]. 长江流域资源与环境, 2020, 29(4): 836-849. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202004005.htm

    LU L J, DAI X Y. Research on tourist network attention and spatial pattern of tourist destination cities in Hunan based on Baidu index[J]. Resources and Environment in the Yangtze Basin, 2020, 29(4): 836-849. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202004005.htm

    [26] 徐凡, 尤玮, 周年兴, 等. 基于百度指数的网络空间关注时空分布研究——以长三角5A级景区为例[J]. 资源开发与市场, 2016, 32(4): 489-493. doi: 10.3969/j.issn.1005-8141.2016.04.021

    XU F, YOU W, ZHOU N X, et al. Tourist attention based on Baidu index of network: temporal and space distribution taking 5A grade scenic spot in Changjiang River Delta as an example[J]. Resources Development and Market, 2016, 32(4): 489-493. doi: 10.3969/j.issn.1005-8141.2016.04.021

    [27] 汪秋菊, 黄明, 刘宇. 城市旅游客流量—网络关注度空间分布特征与耦合分析[J]. 地理与地理信息科学, 2015, 31(5): 102-106. doi: 10.3969/j.issn.1672-0504.2015.05.021

    WANG Q J, HUANG M, LIU Y. Research on spatial feature and coupling correlation between urban tourist flow and network attention-degree[J]. Geography and Geo-Information Science, 2015, 31(5): 102-106. doi: 10.3969/j.issn.1672-0504.2015.05.021

    [28] 刘慧悦. 旅游者网络信息需求与景区游客量的关联性研究——以四川九寨沟为例[J]. 情报科学, 2017, 35(7): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201707007.htm

    LIU H Y. Research on correlations between the demands of online tourism information and tourist volume: a case study of Jiuzhai Valley[J]. Information Science, 2017, 35(7): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201707007.htm

    [29] 王硕, 曾克峰, 童洁. 黄金周风景名胜区旅游客流量与网络关注度相关性分析——以庐山、华山、八达岭长城风景名胜区为例[J]. 经济地理, 2013, 33(11): 182-186. doi: 10.3969/j.issn.1000-8462.2013.11.029

    WANG S, ZENG K F, TONG J. A correlative analysis of the relationship between tourists and tourist network attention for scenic spots in special session[J]. Economic Geo-graphy, 2013, 33(11): 182-186. doi: 10.3969/j.issn.1000-8462.2013.11.029

    [30] 马莉, 刘培学, 张建新, 等. 景区旅游流与网络关注度的区域时空分异研究[J]. 地理与地理信息科学, 2018, 34(2): 87-93. doi: 10.3969/j.issn.1672-0504.2018.02.014

    MA L, LIU P X, ZHANG J X, et al. Research on spatial and temporal difference between tourist flow and web search behavior in scenic spot[J]. Geography and Geo-Information Science, 2018, 34(2): 87-93. doi: 10.3969/j.issn.1672-0504.2018.02.014

    [31] 广东省文化和旅游厅. 广东省文化和旅游发展概况[EB/OL]. (2021-03-09)[2021-03-20]. http://whly.gd.gov.cn/open_newgdswhhlygk/content/post_2721139.html.
    [32] 刘军. 整体网分析: UCINET软件实用指南[M]. 2版. 上海: 格致出版社, 上海人民出版社, 2014.
    [33] 李航飞, 韦素琼, 陈松林. 海峡西岸经济区市域经济网络结构及成因分析[J]. 经济地理, 2017, 37(7): 63-70;78. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201707010.htm

    LI H F, WEI S Q, CHEN S L. An analysis on the network structure and formation causes of regional economic connection in the West Coast of Taiwan Straits Economic Zone[J]. Economic Geography, 2017, 37(7): 63-70;78. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201707010.htm

    [34] 李航飞, 韦素琼, 陈松林, 等. 经贸视角下中国台湾"新南向政策"分析——基于SNA和VAR方法[J]. 地理科学, 2018, 38(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201801008.htm

    LI H F, WEI S Q, CHEN S L, et al. 'New Southward Po-licy' of Taiwan, China under the view of trade: based on the ways of SNA and VAR[J]. Scientia Geographica Sinica, 2018, 38(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201801008.htm

  • 期刊类型引用(0)

    其他类型引用(2)

图(2)  /  表(5)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  133
  • PDF下载量:  46
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-03-28
  • 网络出版日期:  2022-01-09
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回