留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁柱撑蒙脱石表面介导的Fe(Ⅱ)还原体系对邻硝基苯酚的高效去除

卢鹏澄 魏燕富 吴宏海 张璇 陈静

卢鹏澄, 魏燕富, 吴宏海, 张璇, 陈静. 铁柱撑蒙脱石表面介导的Fe(Ⅱ)还原体系对邻硝基苯酚的高效去除[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 40-48. doi: 10.6054/j.jscnun.2021056
引用本文: 卢鹏澄, 魏燕富, 吴宏海, 张璇, 陈静. 铁柱撑蒙脱石表面介导的Fe(Ⅱ)还原体系对邻硝基苯酚的高效去除[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 40-48. doi: 10.6054/j.jscnun.2021056
LU Pengcheng, WEI Yanfu, WU Honghai, ZHANG Xuan, CHEN Jing. The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 40-48. doi: 10.6054/j.jscnun.2021056
Citation: LU Pengcheng, WEI Yanfu, WU Honghai, ZHANG Xuan, CHEN Jing. The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 40-48. doi: 10.6054/j.jscnun.2021056

铁柱撑蒙脱石表面介导的Fe(Ⅱ)还原体系对邻硝基苯酚的高效去除

doi: 10.6054/j.jscnun.2021056
基金项目: 

国家自然科学基金项目 42072046

国家自然科学基金项目 41372050

广东省自然科学基金项目 2018B030311021

详细信息
    通讯作者:

    魏燕富,Email: yanfuwei@m.scnu.edu.cn

  • 中图分类号: X523, O647.3

The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol

  • 摘要: 通过引入铁氧化物并煅烧处理对蒙脱石进行优化设计,成功合成了铁柱撑蒙脱石复合催化剂(FPMt).采用X射线衍射(XRD)、热重分析(TG)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附(BET)等分析方法对FPMt样品结构与表面性质进行表征,以邻硝基苯酚(2-NP,22 μmol/L)作为代表性污染物研究FPMt的还原催化活性. 结果表明:与蒙脱石相比,FPMt表面电子传输活性得到明显提高,原因是引入赤铁矿的FPMt吸附位点增多同时酸位减少,从而显著增强材料表面的还原催化活性. 除溶液pH和Fe(Ⅱ)浓度外,催化剂的结构完整性、赤铁矿的结晶度等均为影响催化剂还原活性的重要因素. 最后提出了FPMt表面络合态Fe(Ⅱ)的还原催化活性显著提高的介导机制.
  • 图  1  铁柱撑蒙脱石样品的XRD图谱

    Figure  1.  The XRD patterns of different FPMt samples

    图  2  FPMt的TG、DTG、DSC图

    Figure  2.  The TG, DTG, DSC curves of FPMt

    图  3  Mt和不同煅烧温度下FPMt的红外光谱

    Figure  3.  The FT-IR spectra of Mt and FPMt samples under different calcination temperatures

    图  4  不同铁柱撑蒙脱石的TEM图

    Figure  4.  The TEM images of different FPMt samples

    图  5  不同铁柱撑蒙脱石的N2吸脱附等温线

    Figure  5.  The N2 adsorption-desorption isotherms of different FPMt samples

    图  6  不同FPMt样品对2-NP的还原去除曲线

    Figure  6.  The reductive removal curves of 2-NP by different FPMt samples

    图  7  不同FPMt样品对2-NP的去除率

    Figure  7.  The removal rate of 2-NP by different FPMt samples

    图  8  不同FPMt样品对Fe2+的去除率

    Figure  8.  Fe2+ remoral rate of different FPMt samples

    图  9  不同Py-FPMt样品的红外光谱

    Figure  9.  The FT-IR spectra of different Py-FPMt samples

    表  1  不同FPMt样品的比表面积和孔结构数据

    Table  1.   The specific surface area and porosity data of different FPMt samples

    样品 比表面积/(m2·g-1) 总孔容积/(cm3·g-1) 平均孔径/nm
    FPMt 126.875 3 0.101 4 5.346 7
    FPMt100 112.736 3 0.078 8 4.792 6
    FPMt200 138.538 7 0.112 8 4.462 9
    FPMt300 144.010 8 0.123 0 4.344 1
    FPMt400 165.693 8 0.136 9 4.198 7
    FPMt500 155.070 2 0.142 1 4.380 7
    下载: 导出CSV

    表  2  不同FPMt样品的阳离子交换量

    Table  2.   The cation exchange capacity of different FPMt samples

    催化剂 Na+交换量/(mol·(100 g)-1)
    Mt原样 99
    FPMt 92
    FPMt100 68
    FPMt200 61
    FPMt300 55
    FPMt400 31
    FPMt500 22
    注:Na+交换量以每100 g材料吸附Na+的物质的量(mol)计算.
    下载: 导出CSV
  • [1] WU H H, SONG Z H, LÜ M X, et al. Iron-pillared montmorillonite as an inexpensive catalyst for 2-nitrophenol reduction[J]. Clays and Clay Minerals, 2018, 66(5): 415-425. doi: 10.1346/CCMN.2018.064107
    [2] XU M, ZHANG A Q, HAN S K, et al. Studies of 3D-quantitative structure-activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA[J]. Chemosphere, 2002, 48(7): 707-715. doi: 10.1016/S0045-6535(02)00165-0
    [3] 郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃[J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016

    GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016
    [4] TAKAHASHI N, NAKAI T, SATOH Y, et al. Variation of biodegradability of nitrogenous organic compounds by ozonation[J]. Water Research, 1994, 28(7): 1563-1570. doi: 10.1016/0043-1354(94)90223-2
    [5] YEHIA F Z, ESHAQ G, ELMETWALLY A E. Enhancement of the working pH range for degradation of p-nitrophenol using Fe2+-aspartate and Fe2+-glutamate complexes as modified Fenton reagents[J]. Egyptian Journal of Petroleum, 2016, 25(2): 239-245. doi: 10.1016/j.ejpe.2015.05.015
    [6] 高大方, 张刚. 复合光催化剂AgCl/AgBr降解水中四溴双酚A的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 50-55. doi: 10.6054/j.jscnun.2019024

    GAO D F, ZHANG G. Photocatalytic degradation of Tetrabromobisphenol A with composite AgCl/AgBr[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 50-55. doi: 10.6054/j.jscnun.2019024
    [7] 陈可欣, 李立峰, 王熙, 等. Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 50-56. doi: 10.6054/j.jscnun.2020093

    CHEN K X, LI L F, WANG X, et al. The preparation of Z-scheme Cu2O-(rGO-TiO2) photocatalyst and its performance in Methyl Orange degradation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 50-56. doi: 10.6054/j.jscnun.2020093
    [8] KLAUSEN J, TROEBER S P, HADERLEIN S B, et al. Reduction of substituted nitrobenzenes by Fe(ll) in aqueous mineral susiensions[J]. Environmental Science & Technology, 1995, 29(9): 2396-2404. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1021/es00009a036
    [9] LI F B, TAO L, FENG C H, et al. Electrochemical evidences for promoted interfacial reactions: the role of Fe(Ⅱ) adsorbed onto γ-Al2O3 and TiO2 in reductive transformation of 2-Nitrophenol[J]. Environmental Science & Technology, 2009, 43(10): 3656-3661. http://www.ncbi.nlm.nih.gov/pubmed/19544869
    [10] 李观燕, 何广平, 吴宏海, 等. 煅烧铝柱撑蒙脱石材料结合态Fe(Ⅱ)对邻硝基苯酚的还原转化研究[J]. 岩石矿物学杂志, 2015, 34(6): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506014.htm

    LI G Y, HE G P, WU H H, et al. The reductive transformation of 2-nitrophenol by Fe(Ⅱ) associated with the thermally treated Al-pillared montmorillonite material[J]. Acta Petrologica et Mineralogica, 2016, 36(4): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506014.htm
    [11] TAO L, ZHU Z K, LI F B. Fe(Ⅱ)/Cu(Ⅱ) interaction on α-FeOOH, kaolin and TiO2 for interfacial reactions of 2-nitrophenol reductive transformation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425: 92-98. http://www.sciencedirect.com/science/article/pii/S092777571300160X
    [12] 刘优, 陆琦. 柱撑粘土矿物的研究新进展——新矿物材料研究综述之一[J]. 矿物岩石, 1999, 19(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.021.htm

    LIU Y, LU Q. New advances of research on pillared clay mineral[J]. Journal of Mineralogy and Petrology, 1999, 19(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.021.htm
    [13] 陆琦, 雷新荣, 汤中道, 等. 柱撑粘土矿物材料的晶体结构和晶体化学特征[J]. 地质科技情报, 2001, 20(1): 91-99. doi: 10.3969/j.issn.1000-7849.2001.01.020

    LU Q, LEI X R, TANG Z D, et al. Crystal structure and crystal chemistry of pillared clay mineral materials[J]. Geological Science and Technology Information, 2001, 20(1): 91-99. doi: 10.3969/j.issn.1000-7849.2001.01.020
    [14] 马炽丽, 曾凡桂. 各种柱撑蒙脱石的合成技术现状[J]. 现代技术陶瓷, 2004, 25(3): 19-22, 26. doi: 10.3969/j.issn.1005-1198.2004.03.006

    MA C L, ZENG F G. Recent status of synthesis technique for different pillared montmorillonite[J]. Advanced Ceramics, 2004, 25(3): 19-22;26. doi: 10.3969/j.issn.1005-1198.2004.03.006
    [15] BAHRANOWSKI K, GAWEł A, KLIMEK A, et al. Influence of purification method of Na-montmorillonite on textural properties of clay mineral composites with TiO2 nanoparticles[J]. Applied Clay Science, 2017, 140: 75-80. doi: 10.1016/j.clay.2017.01.032
    [16] 马炽丽. 铝柱撑蒙脱石的制备与表征[D]. 太原: 太原理工大学, 2004.

    MA C L. The preparation and characterization of Al-pillared montmorillonite[D]. Taiyuan: Taiyuan University of Technology, 2004.
    [17] 丛兴顺. 新型Fe/Cr-Si柱撑蒙脱石的制备, 表征及应用研究[D]. 青岛: 山东科技大学, 2006.

    CONG X S. Studies on preparation, characterization and application of a novel Fe/Cr-Si-pillared montmorillonite catalyst[D]. Qingdao: Shandong University of Science and Technology, 2006.
    [18] WU P X, WU W M, LI S Z, et al. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite[J]. Journal of Hazardous Materials, 2009, 169: 824-830. doi: 10.1016/j.jhazmat.2009.04.022
    [19] MA L Y, XI Y F, HE H P, et al. Efficiency of Fe-montmorillonite on the removal of Rhodamine B and hexavalent chromium from aqueous solution[J]. Applied Clay Science, 2016, 120: 9-15. doi: 10.1016/j.clay.2015.11.010
    [20] TYAGI B, CHUDASAMA C D, JASRA R V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2006, 64(2): 273-278. doi: 10.1016/j.saa.2005.07.018
    [21] BARRIENTOS-VELÁZQUEZ A L, CARDONA A M, LIU L, et al. Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption[J]. Applied Clay Science, 2016, 132/133: 281-289. doi: 10.1016/j.clay.2016.06.014
    [22] WU H H, XIE H R, HE G P, et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite[J]. Applied Clay Science, 2016, 119: 161-169. doi: 10.1016/j.clay.2015.08.001
    [23] MATTHIAS T, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [24] LI D, LI C S, SUZUKI K. Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite[J]. Applied Clay Science, 2013, 77/78: 56-60. doi: 10.1016/j.clay.2013.02.027
    [25] LI J, LI X F, WU K L, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[J]. International Journal of Coal Geology, 2017, 179: 253-268. doi: 10.1016/j.coal.2017.06.008
    [26] MORTLAND M M, RAMAN K V. Surface acidity of smectites in relation to hydration, exchangeable cation, and structure[J]. Clays and Clay Minerals, 1968, 16(5): 393-398. doi: 10.1346/CCMN.1968.0160508
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  19
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回