基于非富勒烯受体IEICO-4F的倍增型有机光电探测器

王建彬, 曾夏辉, 周笔, 余华梁, 周赢武

王建彬, 曾夏辉, 周笔, 余华梁, 周赢武. 基于非富勒烯受体IEICO-4F的倍增型有机光电探测器[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 1-7. DOI: 10.6054/j.jscnun.2021051
引用本文: 王建彬, 曾夏辉, 周笔, 余华梁, 周赢武. 基于非富勒烯受体IEICO-4F的倍增型有机光电探测器[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 1-7. DOI: 10.6054/j.jscnun.2021051
WANG Jianbin, ZENG Xiahui, ZHOU Bi, YU Hualiang, ZHOU Yingwu. Photomultiplication-type Organic Photodetectors Based on Non-fullerene Acceptor IEICO-4F[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 1-7. DOI: 10.6054/j.jscnun.2021051
Citation: WANG Jianbin, ZENG Xiahui, ZHOU Bi, YU Hualiang, ZHOU Yingwu. Photomultiplication-type Organic Photodetectors Based on Non-fullerene Acceptor IEICO-4F[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 1-7. DOI: 10.6054/j.jscnun.2021051

基于非富勒烯受体IEICO-4F的倍增型有机光电探测器

基金项目: 

福建省自然科学基金项目 2018J01420

福建省教育厅中青年教师教育科研项目 JAT200428

详细信息
    通讯作者:

    王建彬,Email:wangjianbinnewlife@foxmail.com

  • 中图分类号: O472+.8; TN304.5

Photomultiplication-type Organic Photodetectors Based on Non-fullerene Acceptor IEICO-4F

  • 摘要: 以非富勒烯材料O-IDTBR和IEICO-4F为电子受体,采用溶液法制备结构为ITO/PEDOT∶PSS/P3HT∶O-IDTBR/Al和ITO/PEDOT∶PSS/P3HT∶IEICO-4F/Al的2种倍增型有机光电探测器. IEICO-4F器件在波长400 nm和790 nm处的最高外量子效率(EQE)分别达7 220% 和1 610%. 在-15 V偏压下,IEICO-4F器件EQE大于100%的光谱响应范围(300~840 nm)比O-IDTBR器件(320~740 nm)宽120 nm. 与-15 V偏压下的O-IDTBR器件相比,IEICO-4F器件在波长400、510、600、790 nm处的EQE(2 630%、1 220%、1 900%、409%)分别提升1.7、1.2、0.5、24.5倍以上. 此外,IEICO-4F器件在400、510、600、790 nm处的探测灵敏度(4.8×1012、2.8×1012、5.2×1012、1.5×1012 cm·Hz1/2·W-1)分别是O-IDTBR器件的3.2、2.5、1.8、30.6倍. 结果表明:采用吸收与P3HT更互补(带隙更窄)的非富勒烯材料IEICO-4F为电子受体,有利于提升倍增型有机光电探测器的性能(特别是器件对近红外光的响应与探测能力),并拓宽器件的光谱响应范围.
    Abstract: With the solution-processing method, photomultiplication (PM)-type organic photodetectors (OPDs) were fabricated with the structures of ITO/PEDOT: PSS/P3HT: IEICO-4F/Al and ITO/PEDOT: PSS/P3HT: O-IDTBR/Al, in which non-fullerene acceptor materials IEICO-4F and O-IDTBR were used as electron acceptors. The highest external quantum efficiency (EQE) of the device based on IEICO-4F-can reach 7 220% and 1 610% at 400 nm and 790 nm, respectively. Under -15 V bias, the EQE of IEICO-4F-based device exceeds 100% in the range of 300 to 840 nm, which is about 120 nm broader than O-IDTBR-based-devices (320 to 740 nm). Compared with the O-IDTBR-based device under -15 V bias, the EQEs (2 630%, 1 220%, 1 900%, 409%) of the IEICO-4F-based device at the wavelength of 400, 510, 600 and 790 nm are 1.7, 1.2, 0.5 and 24.5 times larger, respectively. In addition, the detectivity of IEICO-4F-based device at 400, 510, 600 and 790 nm (4.8×1012, 2.8×1012, 5.2×1012 and 1.5×1012 cm·Hz1/2·W-1) are 3.2, 2.5, 1.8 and 30.6 times as large as those of the O-IDTBR-based device, respectively. These results show that the use of non-fullerene materials IEICO-4F (narrower band gap) with absorption more complementary to P3HT as electron acceptors is beneficial for improving the performance of PM-type OPDs, especially the responsivity and detectivity in near-infrared region, with broadened spectral response range.
  • 图  1   材料能级示意图

    Figure  1.   The schematic diagram of material energy levels

    图  2   材料分子结构和器件结构的示意图

    Figure  2.   The molecular structure of materials and the schematic diagram of device structure

    图  3   器件的J-V曲线

    Figure  3.   The J-V curves of devices

    图  4   器件EQE光谱和材料归一化吸收光谱

    Figure  4.   The EQE spectra of devices and the normalized absorption spectra of materials

    图  5   器件响应度与探测灵敏度光谱

    Figure  5.   The responsivity and detectivity spectra of devices

    图  6   器件电荷传输的示意图

    Figure  6.   The schematic diagram of charge carrier transport in devices

    表  1   O-IDTBR和IEICO-4F器件在不同偏压与波长下的EQE、响应度和探测灵敏度

    Table  1   The EQE, responsivity and detectivity of devices based on O-IDTBR and IEICO-4F under different biases and wavelengths

    器件 λ/nm EQE/% R(-15 V)/ (A·W-1) D*(-15 V)/ (cm·Hz1/2·W-1)
    U=-5 V U=-10 V U=-15 V U=-20 V
    O-IDTBR 400 22.8 260 954 2 310 3.1 1.5×1012
    510 4.8 118 538 1 490 2.2 1.1×1012
    600 37.8 344 1 260 2 940 6.1 2.9×1012
    790 0.5 5 16 27 0.1 4.9×1010
    IEICO-4F 400 81.0 727 2 630 7 220 8.5 4.8×1012
    510 22.7 268 1 220 4 460 5.0 2.8×1012
    600 62.4 513 1 900 5 460 9.2 5.2×1012
    790 8.3 101 409 1 610 2.6 1.5×1012
    下载: 导出CSV
  • [1]

    DONG H L, ZHU H F, MENG Q, et al. Organic photoresponse materials and devices[J]. Chemical Society Reviews, 2012, 41(5): 1754-1808. http://europepmc.org/abstract/med/22158983

    [2]

    RAUCH T, BÖBERL M, TEDDE S F, et al. Near-infrared imaging with quantum-dot sensitized organic photodiodes[J]. Nature Photonics, 2009, 3: 332-336. doi: 10.1038/nphoton.2009.72

    [3]

    BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced Materials, 2013, 25: 4267-4295. doi: 10.1002/adma.201204979

    [4]

    LIU C, WANG K, GONG X, et al. Low bandgap semiconducting polymers for polymeric photovoltaics[J]. Chemical Society Reviews, 2016, 45: 4825-4846. doi: 10.1039/C5CS00650C

    [5]

    GUO F W, XIAO Z G, HUANG J S. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer[J]. Advanced Optical Materials, 2013, 1: 289-294. doi: 10.1002/adom.201200071

    [6]

    YAO B Y, LIANG Y Y, SHROTRIYA V, et al. Plastic near-infrared photodetectors utilizing low band gap polymer[J]. Advanced Materials, 2007, 19: 3979-3983. doi: 10.1002/adma.200602670

    [7]

    ZHANG L Z, YANG T B, SHEN L, et al. Toward highly sensitive polymer photodetectors by molecular engineering[J]. Advanced Materials, 2015, 27: 6496-6503. doi: 10.1002/adma.201502267

    [8]

    LIU X L, ZHOU J J, ZHENG J, et al. Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors[J]. Nanoscale, 2013, 5: 12474-12479. doi: 10.1039/c3nr03602b

    [9]

    SU Z S, HOU F H, WANG X, et al. High-performance organic small-molecule panchromatic photodetectors[J]. ACS Applied Materials & Interfaces, 2015, 7: 2529-2534. http://www.ncbi.nlm.nih.gov/pubmed/25591117

    [10]

    GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325: 1665-1667. doi: 10.1126/science.1176706

    [11]

    LEE H N, NAM S H, KWON H J, et al. Solution-processable all-small molecular bulk heterojunction films for stable organic photodetectors: near UV and visible light sensing[J]. Journal of Materials Chemistry, 2015, 3: 1513-1520. http://www.researchgate.net/publication/270515641_Solution-processable_all-small_molecular_bulk_heterojunction_films_for_stable_organic_photodetectors_Near_UV_and_visible_light_sensing

    [12]

    PARK H D, KUO Y H, FANG A W, et al. A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector[J]. Optics Express, 2007, 15(21): 13539-13546. doi: 10.1364/OE.15.013539

    [13]

    LI L L, ZHANG F J, WANG J, et al. Achieving EQE of 16, 700% in P3HT: PC71BM based photodetectors by trap-assisted photomultiplication[J]. Scientific Reports, 2015, 5: 9181/1-7. http://europepmc.org/abstract/med/25777148

    [14]

    LI L L, ZHANG F J, WANG W B, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J]. ACS Applied Materials & Interfaces, 2015, 7: 5890-5897. http://europepmc.org/abstract/med/25715745

    [15]

    WANG W B, ZHANG F J, LI L L, et al. Improved performance of photomultiplication polymer photodetectors by adjustment of P3HT molecular arrangement[J]. ACS Applied Materials & Interfaces, 2015, 7: 22660-22668. doi: 10.1021/acsami.5b07522

    [16]

    BAI H T, WANG Y F, CHENG P, et al. An electron acceptor based on indacenodithiophene and 1, 1-dicyanomethylene-3-indanone for fullerene-free organic solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 1910-1914. doi: 10.1039/C4TA06004K

    [17]

    WU Y, BAI H T, WANG Z U, et al. A planar electron acceptor for efficient polymer solar cells[J]. Energy & Environmental Science, 2015, 8: 3215-3221.

    [18]

    LIN Y Z, WANG J Y, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27: 1170-1174. doi: 10.1002/adma.201404317

    [19]

    HOLLIDAY S, ASHRAF R S, WADSWORTH A, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor[J]. Nature Communications, 2016, 7: 11585/1-11. http://www.nature.com/articles/ncomms11585

    [20]

    YAO H F, CUI Y, YU R N, et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap[J]. Angewandte Chemie International Edition, 2017, 56: 3045-3049. doi: 10.1002/anie.201610944

    [21] 温明菊, 张笑健, 郑永嘉, 等. ZnO纳米纤维的引入对P3HT/PCBM电池光电性能的影响[J]. 华南师范大学学报(自然科学版), 2013, 45(5): 47-50. http://journal-n.scnu.edu.cn/article/id/3217

    WEN M J, ZHENG X J, ZHWNG Y J, et al. Investigation on the performance of air-processed ZnO nanofibers: poly (3-hexylthiophene): methanofullerene bulk-heterojunction solar cells[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(5): 47-50. http://journal-n.scnu.edu.cn/article/id/3217

    [22] 贺冠南, 黄波. ZnO陷光结构材料的制备及其太阳能电池性能的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056

    HE G N, HUANG B. Preparation of ZnO light trapping materials and their performance in solar cells[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056

    [23]

    WANG W B, ZHANG F J, BAI H T, et al. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale, 2016, 8: 5578-5586. doi: 10.1039/C6NR00079G

    [24]

    WANG J B, ZHENG Q D. Enhancing the performance of photomultiplicationtype organic photodetectors using solution-processed ZnO as an interfacial layer[J]. Journal of Materials Chemistry C, 2019, 7: 1544-1550. doi: 10.1039/C8TC04962A

    [25]

    CAMPBELLA H I, CRONE B K. Bulk photoconductive gain in poly(phenylene vinylene) based diodes[J]. Journal of Applied Physics, 2007, 101: 024502/1-5. doi: 10.1063/1.2422909

图(6)  /  表(1)
计量
  • 文章访问数:  1140
  • HTML全文浏览量:  347
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回