纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛

陈烨婷, 左雄军, 顾凤龙

陈烨婷, 左雄军, 顾凤龙. 纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 29-34. DOI: 10.6054/j.jscnun.2021040
引用本文: 陈烨婷, 左雄军, 顾凤龙. 纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 29-34. DOI: 10.6054/j.jscnun.2021040
CHEN Yeting, ZUO Xiongjun, GU Fenglong. The Catalytic Formation of 5-Hydroxymethyl Furfuraldehyde from Glucose with Nano-TiO2 Gel[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 29-34. DOI: 10.6054/j.jscnun.2021040
Citation: CHEN Yeting, ZUO Xiongjun, GU Fenglong. The Catalytic Formation of 5-Hydroxymethyl Furfuraldehyde from Glucose with Nano-TiO2 Gel[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 29-34. DOI: 10.6054/j.jscnun.2021040

纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛

基金项目: 

国家自然科学基金项目 21673085

粤港科技合作资助计划项目 2017A050506048

详细信息
    通讯作者:

    顾凤龙,Email: gu@scnu.edu.cn

  • 中图分类号: O643

The Catalytic Formation of 5-Hydroxymethyl Furfuraldehyde from Glucose with Nano-TiO2 Gel

  • 摘要: 采用溶胶凝胶法合成了纳米TiO2溶胶和PEG-TiO2溶胶,将其作为葡萄糖转化为5-羟甲基糠醛(HMF)的催化剂,对比研究了纳米TiO2粉体和TiO2溶胶的催化性能. 结果表明: 以纳米TiO2溶胶为催化剂,葡萄糖转化为HMF的转化率为93.7%,HMF的收率为21.7%;以纳米TiO2为催化剂,葡萄糖的转化率接近100%,而HMF的收率仅为1.4%. 采用聚乙二醇(PEG 200)和钛酸乙酯为原料,制备了具有更高TiO2固含量的PEG-TiO2溶胶,方便运输、储存和使用. 在最佳条件下,以PEG-TiO2溶胶和甲酸为催化剂,以水为反应溶剂,葡萄糖的转化率达到92.0%,HMF的收率达到56.2%,反应温度为100 ℃,反应时间为12 h. 研究结果为工业上大规模绿色高效催化葡萄糖转化为HMF提供了一种新的方法.
    Abstract: Nano TiO2 gel and PEG-TiO2 gel were synthesized with the sol-gel method and were used as catalysts for glucose conversion into 5-hydroxymethyl furfuraldehyde (HMF). The catalytic properties of nano TiO2 gel and TiO2 powder were compared. The results show that with nano TiO2 gel as catalyst, the conversion rate of glucose into HMF was 93.7%, and the yield of HMF was 21.7% and with nano TiO2 as catalyst, the glucose conversion rate was close to 100%, while the yield of HMF was only 1.4%. PEG-TiO2 with higher gelid content of TiO2 was prepared using polyethylene glycol (PEG 200) and ethyl titanate as raw materials, which was convenient for transportation, storage and use. Under the optimal conditions, with PEG-TiO2 gel and formic acid as catalyst and water as reaction liquid, the glucose conversion rate reached 92.0%, the yield of HMF reached 56.2%, the reaction temperature was 100 ℃, and the reaction time was 12 h. The results provide a new method for large-scale green and efficient catalytic conversion of glucose into HMF in industry.
  • 图  1   不同催化剂的TEM、SEM图

    Figure  1.   The TEM and SEM images of different catalysts

    图  2   不同催化剂的XRD图谱

    注:a为干燥的PEG-TiO2溶胶,b为600 ℃下烧结得到的PEG-TiO2溶胶,c为700 ℃下烧结得到的PEG-TiO2溶胶,d为800 ℃下烧结得到的PEG-TiO2溶胶.

    Figure  2.   The XRD pattern of different catalysts

    图  3   纳米TiO2溶胶和粉体的催化效果

    注:A采用100 mL纳米TiO2溶胶和0.5 g葡萄糖,在79 ℃下反应; B采用100 mL水和2 g葡萄糖,在100 ℃下反应.

    Figure  3.   The catalytic effects of nano TiO2 gel and powders

    图  4   催化剂体积对收率和转化率的影响

    注:以PEG-TiO2溶胶为催化剂,加水至反应液总体积为100 mL,葡萄糖为0.5 g,温度为100 ℃,反应时间为6 h.

    Figure  4.   The effect of catalyst volume on the yield and the conversion rate

    图  5   甲酸体积和反应时间对收率和转化率的影响

    注:反应液总体积为100 mL,葡萄糖为2 g,温度为100 ℃.

    Figure  5.   The effects of the volume of formic acid and reaction time on the the yield and the conversion rate

    图  6   催化剂的循环使用次数对收率和转化率的影响

    注:采用30 mL水、30 mL PEG-TiO2溶胶、40 mL甲酸、2 g葡萄糖,在100 ℃下反应6 h.

    Figure  6.   The influence of catalyst cycle times on the yield and the conversion rate

    表  1   催化剂的平均粒径

    Table  1   The average particle size of catalysts

    样品 平均粒径/nm PdI
    纳米TiO2溶胶a 52 0.184
    纳米TiO2溶胶b 352 0.303
    PEG-TiO2溶胶c 1 510 1.000
    PEG-TiO2溶胶d 1 580 1.000
    注:a为新制的纳米TiO2溶胶; b为放置2 d后的纳米TiO2溶胶;c为新制的PEG-TiO2溶胶; d为放置2 d后的PEG-TiO2溶胶.
    下载: 导出CSV
  • [1]

    ROSATELLA A A, SIMEONOV S P, FRADEA R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 4(13): 754-793. doi: 10.1002/chin.201132258/full

    [2]

    CAI C M, ZHANG T, KUMAR R, et al. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. Journal of Chemical Techno-logy and Biotechnology, 2014, 89(1): 2-10. doi: 10.1002/jctb.4168

    [3]

    ZHANG Y L, LI B, GUAN W, et al. One-pot synthesis of HMF from carbohydrates over acid-base bi-functional carbonaceous catalyst supported on halloysite nanotubes[J]. Cellulose, 2020, 27(2): 3037-3054. doi: 10.1007/s10570-020-02994-1

    [4]

    KUSTER B F M. 5-Hydroxymethylfurfural (HMF): a review focussing on its manufacture[J]. Starch, 1990, 42(8): 314-321. doi: 10.1002/star.19900420808

    [5]

    ATANDA L, KONAROVA M, MA Q, et al. High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system[J]. Catalysis Science & Technollogy, 2016, 6(9): 6257-6266. http://smartsearch.nstl.gov.cn/paper_detail.html?id=76f3db662b290d953140c5b67a4c38e8

    [6]

    HANSEN T S, WOODLEY J M, RⅡSAGER A, et al. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose[J]. Carbohydrate Research, 2009, 34(4): 2568-2572. http://www.cabdirect.org/abstracts/20093354102.html

    [7]

    LANZIANO C A S, MOYA S F, BARRETT D H, et al. Hybrid-organic-inorganic anatase as a bifunctional catalyst for enhanced production of HMF from glucose in water[J]. ChemSusChem, 2018, 8(6): 110-111. http://www.ncbi.nlm.nih.gov/pubmed/29316333

    [8]

    ZHANG Z, LIU B, ZHAO Z. Conversion of fructose into HMF catalyzed by GeCl4, in DMSO and[Bmim]Cl system at room temperature[J]. Carbohydrate Polymers, 2012, 88(3): 891-895. doi: 10.1016/j.carbpol.2012.01.032

    [9]

    ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312: 1933-1937. doi: 10.1126/science.1126337

    [10]

    ZHAO H, HOLLADAY J E, BROWN H, et al. Metal chlorides in ionic liquid gelvents convert sugars to 5-Hydroxymethylfurfural[J]. Science, 2007, 316: 1597-1600. doi: 10.1126/science.1141199

    [11]

    HU S Q, ZHANG Z F, ZHOU Y X, et al. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids[J]. Green Chemistry, 2009, 5(11): 873-877. http://www.ingentaconnect.com/content/rsoc/14639262/2009/00000011/00000006/art00027

    [12]

    QI X H, WATANABE M, AIDA T M, et al. Efficient catalytic conversion of fructose into 5-Hydroxymethylfurfural in ionic liquids at room temperature[J]. ChemSusChem, 2009, 2(7): 944-946. http://www.ncbi.nlm.nih.gov/pubmed/?term=19790220[uid]

    [13]

    NOMA R, NAKAJIMA K, KAMATA K, et al. Formation of 5-(Hydroxymethyl) furfural by stepwise dehydration over TiO2 with water-tolerant Lewis Acid sites[J]. Journal of Physical Chemistry C, 2015, 119(30): 17117-17125. doi: 10.1021/acs.jpcc.5b03290

    [14]

    TUERCKE T, PANIC S, LOEBBECKE S, et al. Microreactor process for the optimized synthesis of 5-Hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose[J]. Chemical Engineering & Technology, 2009, 32(2): 1815-1822. http://www.researchgate.net/publication/230455178_Microreactor_Process_for_the_Optimized_Synthesis_of_5-Hydroxymethylfurfural_A_Promising_Building_Block_Obtained_by_Catalytic_Dehydration_of_Fructose

    [15]

    YAO K, TANG C. Controlled polymerization of next-generation renewable monomers and beyond[J]. Macromolecules, 2013, 46(5): 1689-1712. doi: 10.1021/ma3019574

    [16] 郑品棋, 熊予莹, 黄志安, 等. 化学沉淀法和溶胶-凝胶法制备纳米二氧化钛及其抑菌性的研究[J]. 华南师范大学学报(自然科学版), 2006(3): 65-69. doi: 10.3969/j.issn.1000-5463.2006.03.012

    ZHENG P Q, XIONG Y Y, HUANG Z A, et al. Study on TiO2 nanoparticle prepared by chemistry precipitation method and sol-gel method and its antibacterial property[J]. Journal of South China Normal University(Natural Science Editioin), 2006(3): 65-69. doi: 10.3969/j.issn.1000-5463.2006.03.012

    [17] 伊洪坤, 卢平. 壳聚糖改性TiO2光催化剂的制备及其光催化性能研究[J]. 华南师范大学学报(自然科学版), 2009(2): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF200902019.htm

    YI H K, LU P. The preparation of CTS modified TiO2 and its photocatalytic activity[J]. Journal of South China Normal University(Natural Science Edition), 2009(2): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF200902019.htm

    [18] 杨挺. 高效液相色谱分析葡萄糖和山梨醇的研究[J]. 华南师范大学学报(自然科学版), 2000(3): 49-51. doi: 10.3969/j.issn.1000-5463.2000.03.012

    YANG T. Study on analysing glucose and sorbitol by high performance liquid chromatography[J]. Journal of South China Normal University(Natural Science Edition), 2000(3): 49-51. doi: 10.3969/j.issn.1000-5463.2000.03.012

  • 期刊类型引用(0)

    其他类型引用(2)

图(6)  /  表(1)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  177
  • PDF下载量:  70
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-11-09
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回