The Self-assembled SnO2-FeO(OH) on Natural Graphite Surface as A High-capacity Anode for Lithium Ion Batteries
-
摘要: 利用双水解反应制备含稳定胶束H2SnO3@Fe(OH)3的胶体溶液,并在静电吸附作用下将其自组装到天然石墨表面,经水热反应构建了表面具有SnO2-FeO(OH)精细结构的石墨负极体系. 结构表征结果显示:水热反应后天然石墨表面存在致密的纳米结构包覆层,该包覆层是由超细SnO2纳米晶颗粒(粒径 < 6 nm)弥散的非晶态FeO(OH)组成. 电化学测试结果表明:在石墨表面构建SnO2-FeO(OH)精细纳米结构不仅能提升其充电/放电容量,而且还可改善其循环稳定性. 在0.1C充放电流密度下,经表面修饰的天然石墨首次充放电效率达到77.5%,循环100次后放电容量仍能维持在384.4 mAh/g,放电容量较商用天然石墨提高了23%.Abstract: A stable H2SnO3@Fe(OH)3 colloidal solution is prepared through double hydrolysis. It is self-assembled on the surface of natural graphite under the action of electrostatic adsorption. After the hydrothermal reaction, the H2SnO3@Fe(OH)3 colloidal micelles on the surface of graphite are changed into SnO2-FeO(OH) co-dispersed structures. The structural characterizations show that there is a dense nanostructure coating on the surface of natural graphite after hydrothermal reaction, composed of ultrafine SnO2 nanocrystalline particles (< 6 nm) and amorphous FeO(OH). The electrochemical testing results indicate that the SnO2-FeO(OH) fine nanostructures can not only improve the charge/discharge capacity of graphite, but also improve its cyclic stability. At a current density of 0.1C, the initial cycle efficiency of the modified graphite can reach 77.5%. After 100 cycles, the discharge capacity of modified graphite can be maintained at 384.4 mAh/g, which is 23% higher than that of commercial graphite.
-
Keywords:
- graphite /
- lithium ion battery /
- electrochemistry /
- energy storage /
- anode /
- SnO2
-
-
表 1 天然石墨与C@SnO2-FeO(OH)的交流阻抗拟合值
Table 1 The fitting values of the graphite and C@SnO2-FeO(OH) based on the AC impedance experiments
循环次数 天然石墨 C@SnO2-FeO(OH) Ro/Ω Rct/Ω Zw/Ω DLi+/(×10-19 cm2·s-1) Ro/Ω Rct/Ω Zw/Ω DLi+/(×10-19 cm2·s-1) 0 2.9 815.5 1 116.1 0.23 2.1 796.6 794.9 0.29 1 2.1 246.5 670.7 1.74 2.1 154.2 492.7 3.79 3 2.3 242.9 640.9 1.98 2.3 202.5 419.1 2.86 5 2.6 264.5 640.7 1.87 2.5 231.8 393.9 2.54 -
[1] LEE M L, LI Y H, LIAO S C, et al. Li4Ti5O12-coated graphite anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 112: 529-534. doi: 10.1016/j.electacta.2013.08.150
[2] 王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-65. WANG C, MA P, ZHU G L, et al. LIB long life graphite electrode: state-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-65.
[3] 吴世锋, 徐立宏, 刘琳, 等. 人造石墨粉制备锂离子电池负极材料的工艺技术研究[J]. 炭素技术, 2020, 39(4): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS202004013.htm WU S F, XU L H, LIU L, et al. Study on the techniques of anode materials for lithium ion batteries with artificial graphite powder[J]. Carbon Techniques, 2020, 39(4): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS202004013.htm
[4] 孟祥德, 张俊红, 王妍妍, 等. 天然石墨负极地改性研究[J]. 化学学报, 2012, 70(6): 812-816. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201206019.htm MENG X D, ZHANG J H, WANG Y Y, et al. Modification of nature graphite anode[J]. Acta Chimica Sinica, 2012, 70(6): 812-816. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201206019.htm
[5] 赵琢, 贾晓川, 李晶, 等. 天然石墨负极地氧化改性[J]. 新型炭材料, 2013, 28(5): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-XTCL201305016.htm ZHAO Z, JIA X C, LI J, et al. Oxidative modification of natural graphite for use as the anode of a lithium ion battery[J]. New Carbon Materials, 2013, 28(5): 585-390. https://www.cnki.com.cn/Article/CJFDTOTAL-XTCL201305016.htm
[6] 邢宝林, 鲍倜傲, 李旭升, 等. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202015009.htm XING B L, BAO T A, LI X S, et al. Research progress on structure regulation and surface modification of graphite anode materials for lithium ion batteries[J]. Materials Reports, 2020, 34(15): 15063-15068. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202015009.htm
[7] 饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学技术科学, 2017, 47(7): 13-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201701002.htm RAO J, ZHANG P, HE S, et al. A review on the utilization of natural graphite and graphite-based materials[J]. Scientia Sinica Technologica, 2017, 47(7): 13-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201701002.htm
[8] 张晓波, 叶学海. 包覆处理对提高人造石墨负极材料性能的研究[J]. 无机盐工业, 2015, 47(8): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201508028.htm ZHANG X B, YE X H. Research on improvement of properties of synthetic graphite anode battery materials by doping treatment[J]. Inorganic Chemicals Industry, 2015, 47(8): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201508028.htm
[9] 王春梅, 赵海雷, 王静, 等. 有机物热解碳包覆人造石墨负极材料的改性研究[J]. 功能材料, 2012, 43(23): 3208-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201223006.htm WANG C M, ZHAO H L, WANG J, et al. Modification on artificial graphite anode material by coating with organic pyrolytic carbon[J]. Journal of Functional Materials, 2012, 43(23): 3208-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201223006.htm
[10] 陈素素, 陈新丽, 邓洪. SnO2@C锂离子电池负极材料的制备及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086 CHEN S S, CHEN X L, DENG H. Preparation and application of SnO2@C as anode material in lithium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086
[11] 唐致远, 潘丽珠, 刘春燕. 锂离子电池石墨负极材料表面镍包覆[J]. 电池, 2020, 32(4): 194-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI200204001.htm TANG Z Y, PAN L Z, LIU C Y. Nickel coating on graphite anode material of lithium ion battery[J]. Battery, 2020, 32(4): 194-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI200204001.htm
[12] 苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082 SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
[13] 耿凯明, 吴俊杰, 耿宏波, 等. 氮掺杂碳层包覆金属钴颗粒与氮掺杂石墨烯纳米复合材料作为高容量锂离子电池负极材料[J]. 无机化学学报, 2016, 32(9): 1495-1502. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201609001.htm GENG K M, WU J J, GENG H B, et al. N-doped carbon-encapsulated cobalt nanoparticles on N-doped graphene nanosheets as a high-capacity anode material for lithium-ion storage[J]. Chinese Journal of Inorganic Chemistry, 2016, 32(9): 1495-1502. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201609001.htm
[14] ZHOU Y L, WANG F, JIN X J, et al. Rapid preparation of ultra-fine and well-dispersed SnO2 nanoparticles via a double hydrolysis reaction for lithium storage[J]. Nano-scale, 2020, 12: 15697-15705. http://pubs.rsc.org/en/content/articlelanding/2020/nr/d0nr02219e
[15] DURÃES L, MOUTINHO A, SEABRA I, et al. Sol-gel synthesis and washing of amorphous g-FeO(OH) xerogels[J]. Materialwissenschaft und Werkstofftechnik, 2012, 43: 427-434. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/02041727528.html
[16] LU J, PENG Q, WANG Z Y, et al. Hematite nanodiscs exposing (001) facets: synthesis, formation mechanism and application for Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1: 5232-5237. http://smartsearch.nstl.gov.cn/paper_detail.html?id=0020d426c5aeef4ed1c6bde7ff62aa4b
[17] CAI J G, CHEN S Y, JI M, et al. Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment[J]. CrystEngComm, 2014, 16: 1553-1559. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=100097586&site=ehost-live
[18] KONG H B, LV C D, YAN C S, et al. Engineering mesoporous single crystals Co-doped Fe2O3 for high performance lithium ion batteries[J]. Inorganic Chemistry, 2017, 56: 7642-7649. http://europepmc.org/abstract/MED/28650157
-
期刊类型引用(3)
1. 刘婧怡,蒋雅萌,冯伟,郑凤,许新华. 自愈合离子凝胶的制备及传感测试. 大学化学. 2022(05): 304-310 . 百度学术
2. 郭媛媛,蒋洪伟,袁冬,唐彪,周国富. 电润湿显示材料与器件技术研究进展. 液晶与显示. 2022(08): 925-941 . 百度学术
3. 刘丽明,闫航瑞. 氯化钠液滴在特氟龙表面润湿行为的电控调节研究. 传感器与微系统. 2021(02): 38-40+43 . 百度学术
其他类型引用(1)