新型明胶-无定形磷酸钙3D打印骨修复材料的制备

聂建华, 王俊, 侯勇, 程江, 莫嘉琪

聂建华, 王俊, 侯勇, 程江, 莫嘉琪. 新型明胶-无定形磷酸钙3D打印骨修复材料的制备[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 7-12. DOI: 10.6054/j.jscnun.2021020
引用本文: 聂建华, 王俊, 侯勇, 程江, 莫嘉琪. 新型明胶-无定形磷酸钙3D打印骨修复材料的制备[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 7-12. DOI: 10.6054/j.jscnun.2021020
NIE Jianhua, WANG Jun, HOU Yong, CHENG Jiang, MO Jiaqi. The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 7-12. DOI: 10.6054/j.jscnun.2021020
Citation: NIE Jianhua, WANG Jun, HOU Yong, CHENG Jiang, MO Jiaqi. The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 7-12. DOI: 10.6054/j.jscnun.2021020

新型明胶-无定形磷酸钙3D打印骨修复材料的制备

基金项目: 

广东省科技创新战略" 攀登计划" 专项项目 PDJH2020B1286

中山市社会公益科技研究项目 2019B2062

校级重点科研项目 2019KQ01

校级青年科研骨干项目 2019GG03

详细信息
    通讯作者:

    聂建华, Email: niechenzhou@126.com

  • 中图分类号: TB34

The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing

  • 摘要: 首先采用共沉淀法制备明胶改性的无定形磷酸钙(ACP)粉末材料,再以纯水作为粘接溶液,通过3D打印机制造骨移植修复材料,并应用红外光谱仪、X射线衍射仪以及扫描电子电镜进行表征. 对于明胶稳定无定形磷酸钙化学结构的相关作用机制给出了初步的解释,重点考察了明胶添加量对打印骨成品的微观形貌、抗压强度以及孔隙率的影响规律,确定了明胶最佳用量为0.15%(质量分数),此时打印骨成品的抗压强度高达31.7 MPa,孔隙率为30.2%,表明打印骨成品在力学性能和骨传导性之间取得了平衡,可被广泛应用于骨修复临床应用.
    Abstract: The amorphous calcium phosphate (ACP) modified by gelatin was prepared with the coprecipitation method and then used as prototyping powder for three-dimensional printing (3DP). The 3DP products of bone repair materials were fabricated with deionized water serving as adhesive solution and then characterized with Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM) separately. The mechanism of ACP stabilized with gelatin was initially discussed and the effect of gelatin content on the chemical stability of ACP and the compressive strength as well as porosity of 3DP products were investigated respectively. The optimal dosage of gelatin was determined to be 0.15% (mass fraction) and the corresponding compressive strength and bone conductibility of the 3DP products were 31.7 MPa and 30.2% respectively, at which a balance was obtained between them and the 3DP products could be widely used for repairing bone defects.
  • 图  1   恒温恒湿条件下明胶-ACP的储存寿命

    Figure  1.   The storage lifetime of gelatin-ACP under constant temperature and humidity

    图  2   恒温恒湿保养10周后明胶-ACP的XRD图谱

    Figure  2.   The XRD patterns of gelatin-ACP stored 10 weeks under constant temperature and humidity

    图  3   打印骨成品的性能

    Figure  3.   The properties of 3DP products

    图  4   打印骨成品的纵截面SEM图

    Figure  4.   The SEM of longitudinal section of 3DP products

    图  5   最优打印骨成品的XRD图谱

    Figure  5.   The XRD pattern of the optimal 3DP products

    图  6   明胶-ACP粉体与打印骨成品的红外光谱

    Figure  6.   The infrared spectra of the optimal gelatin-ACP and 3DP product

  • [1]

    EPPLE M, GANESAN K, HEUMANN R, et al. Application of calcium phosphate nanoparticles in biomedicine[J]. Journal of Materials Chemistry, 2010, 20(1): 18-23. doi: 10.1039/B910885H

    [2]

    DOROZHKIN S, EPPLE M. Biological and medical signi-ficance of calcium phosphates[J]. Angewandte Chemie International Edition, 2002, 41: 3130-3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1

    [3]

    LEUCHT P, CASTILLO A B, BELLINO M J. Comparison of tricalcium phosphate cement and cancellous autograft as bone void filler in acetabular fractures with marginal impaction[J]. Injury, 2013, 44(7): 969-974. doi: 10.1016/j.injury.2013.04.017

    [4]

    SHEPHERD J H, BEST S M. Calcium phosphate scaffolds for bone repair[J]. Journal of Metals, 2011, 63(4): 83-92. doi: 10.1007/s11837-011-0063-9

    [5]

    PEREZ R, KIM T H, KIM M, et al. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response[J]. Journal of Biomedical Materials Research, 2013, 101(4): 923-931. doi: 10.1002/jbm.a.34390

    [6]

    YU W, LI R, LONG J, et al. Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits[J]. Journal of Orthopaedic Translation, 2019, 16: 62-70. doi: 10.1016/j.jot.2018.07.007

    [7]

    CASAS-LUNA M, TAN H, TKACHENKO S, et al. Enhancement of mechanical properties of 3D-plotted tricalcium phosphate scaffolds by rapid sintering[J]. Journal of the European Ceramic Society, 2019, 39(14): 4366-4374. doi: 10.1016/j.jeurceramsoc.2019.05.055

    [8]

    CASTILHO M, MOSEKE C, EWALD A, et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects[J]. Biofabrication, 2014, 6: 015006/1-12. http://europepmc.org/abstract/med/24429776

    [9]

    KAKIAGE M, HATANAKA Y, KOBAYASHI H. Fabrication of three-dimensional interconnected nanoporous hydroxyapatite by freeze-thaw process of amorphous calcium phosphate-poly(vinyl alcohol) gel[J]. Journal of Alloys and Compounds, 2017, 696: 566-571. doi: 10.1016/j.jallcom.2016.11.205

    [10]

    CHATTERJEE K, SUN L, CHOW L C, et al. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays[J]. Biomaterials, 2011, 32(5): 1361-1369. doi: 10.1016/j.biomaterials.2010.10.043

    [11]

    BECKER A, ZIEGLER A, EPPLE M. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate[J]. Dalton Transactions, 2005, 21(10): 1814-1820. http://www.ncbi.nlm.nih.gov/pubmed/15877152

    [12]

    OTSUA M, MATSUDS Y, SUWA Y, et al. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement[J]. Journal of Biomedical Materials Research, 1995, 29(1): 25-32. doi: 10.1002/jbm.820290105

    [13] 聂建华, 吴皎皎, 程江, 等. 热塑性聚氨酯/石膏复合粉末的三维打印特性[J]. 化工进展, 2017, 36(6): 2230-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706039.htm

    NIE J H, WU J J, CHENG J, et al. Three-dimension printing of thermoplastic polyurethane/gypsum composited powder[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2230-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706039.htm

    [14]

    POSNER A S, BELTS F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure[J]. Accounts of Chemical Research, 1975, 8(8): 273-281. doi: 10.1021/ar50092a003

    [15]

    LI Y, WILIANA T, TAM K C. Synthesis of amorphous calcium phosphate using various types of cyclodextrins[J]. Materials Research Bulletin, 2007, 42(5): 820-827. doi: 10.1016/j.materresbull.2006.08.027

    [16]

    CROSS K J, HUQ N L, PALAMARA J E, et al. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes[J]. Journal of Biological Chemistry, 2005, 280(15): 15362-15369. doi: 10.1074/jbc.M413504200

    [17]

    GEORGE A, VEIS A. Phosphorylated proteins and control over apatite nulcleation, crystal growth and inhibition[J]. Chemical Reviews, 2008, 108(11): 4670-4693. doi: 10.1021/cr0782729

    [18]

    ZHANG X J, LIN D Y, YAN X H, et al. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution[J]. Journal of Crystal Growth, 2011, 336(11): 60-66. http://www.sciencedirect.com/science/article/pii/S0022024811007962

    [19]

    PARK H, CARR W W, ZHU J Y, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2003, 49(10): 2461-2471. doi: 10.1002/aic.690491003

    [20] 聂建华, 程江, 杨卓如, 等. 羧基丙烯酸树脂微乳液的制备及其在3D打印中的应用[J]. 合成树脂及塑料, 2017, 34(3): 85-87. doi: 10.3969/j.issn.1002-1396.2017.03.026

    NIE J H, CHENG J, YANG Z R, et al. Preparation of carboxyl acrylic resin microemulsion and its application in 3D printing[J]. China Synthetic Resin and Plastics, 2017, 34(3): 85-87. doi: 10.3969/j.issn.1002-1396.2017.03.026

    [21] 聂建华, 周志盛, 霍泽荣, 等. 弹性产品用聚酰胺树脂打印通用型粉末材料及黏结溶液的研究[J]. 塑料工业, 2014, 42(1): 122-125. doi: 10.3969/j.issn.1005-5770.2014.01.029

    NIE J H, ZHOU Z S, HUO Z R, et al. Research on polyamide resin as prototyping powder and binder solution for elastic products via 3D printing[J]. China Plastics Industry, 2014, 42(1): 122-125. doi: 10.3969/j.issn.1005-5770.2014.01.029

    [22]

    GELLI R, RIDI F, BAGLIONI P. The importance of being amorphous: calcium and magnesium phosphates in the human body[J]. Advances in Colloid and Interface Science, 2019, 269: 219-235. doi: 10.1016/j.cis.2019.04.011

    [23]

    BENIASH E, METZLER R A, LAM R S, et al. Transient amorphous calcium phosphate in forming enamel[J]. Journal of Structural Biology, 2009, 166(2): 133-143. doi: 10.1016/j.jsb.2009.02.001

  • 期刊类型引用(9)

    1. 张亚男,何安尤,刘斐,黄琦,肖林,万凌琳. 南亚热带典型河流轮虫物种和功能多样性的空间与季节变化:以柳江为例. 贵州师范大学学报(自然科学版). 2025(01): 15-24+45 . 百度学术
    2. 李晴,张梦悦,于明乔,李小璇,常明,陈立斌,丁森. 东莞城市河流大型底栖动物群落结构及影响因子. 生态环境学报. 2024(01): 101-110 . 百度学术
    3. 杨海菊,韦锋,陈嘉美,陈蓓,李方,杜丽娜,韩雪蓉. 一套适用于评价漓江水质的底栖动物多样性指数. 广西师范大学学报(自然科学版). 2024(04): 172-185 . 百度学术
    4. 吴思萱,曾庆慧,胡鹏,武中强,侯佳明,吕小龙,祖丽菲亚·卡斯木. 伊通河城区段底栖动物完整性对水质的响应时滞. 南水北调与水利科技(中英文). 2023(01): 160-171 . 百度学术
    5. 杨志昭,张子良,朱弘阳,王茜,孔凡青. 滦河流域大型底栖动物群落结构分析. 农业技术与装备. 2023(06): 78-80+83 . 百度学术
    6. 杜展鹏,段仲昭,程国微,王明净,高伟,杨汝兰,李天彧. 基于绝对主成分-多元线性回归牧羊河流域水环境污染源解析. 福建师范大学学报(自然科学版). 2023(05): 124-132 . 百度学术
    7. 吕阳奇,刘财鑫,顾天宇,陈辉,王璐瑶,潘达,吴军. 瓯江源头区龙泉溪底栖大型无脊椎动物多样性和群落特征. 中国环境监测. 2023(06): 142-156 . 百度学术
    8. 周佳诚,宋志斌,苗芃,谭路,唐涛. 柳江不同河网位置大型底栖动物群落特征及其影响因子差异比较研究. 生态环境学报. 2023(10): 1794-1801 . 百度学术
    9. 丁振军. 浑河沈阳段底栖动物群落特征及与环境因子的关系. 绿色科技. 2022(10): 37-40 . 百度学术

    其他类型引用(3)

图(6)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  240
  • PDF下载量:  71
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-10-20
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-04-24

目录

    /

    返回文章
    返回