Blow-up of Solutions to the m-Laplacian Type Wave Equation with Strong Delay Terms
-
摘要: 研究带有强阻尼时滞项的m-Laplacian型波方程: utt−Δmu−Δu+g∗Δu−μ1Δut(x,t)−μ2Δut(x,t−τ)=|u|p−2u 解的爆破:当初始能量0 < E(0) < E1时, 利用能量函数构造凹函数L1(t), 得到微分不等式
dL1(t)dt≥ξ0L1+ν1(t) (ξ0>0,ν>0,t≥0) , 在(0, t)上对此微分不等式积分, 从而可知存在有限时间T*>0, 使得当时间t趋于T*时, 该m-Laplacian型波方程的解爆破; 当初始能量E(0) < 0时, 构造凹函数L2(t), 通过同样的方法得到该方程的解存在有限时间爆破.-
关键词:
- m-Laplacian /
- 强阻尼时滞项 /
- 爆破
Abstract: Blow-up of solutions to the m-Laplacian type wave equation with strong delay was studied: utt−Δmu−Δu+g∗Δu−μ1Δut(x,t)−μ2Δut(x,t−τ)=|u|p−2u. When the initial energy 0 < E(0) < E1, the concave function L1(t) was constructed with the energy function, and the differential inequality dL1(t)dt≥ξ0L1+ν1(t) (ξ0>0,ν>0,t≥0) was obtained. Then, the differential inequality was integrated in (0, t), and it was proved that there was a finite time T*>0, so that when the time t was tended to T*, the m-Laplacian type wave equation underwent blow-up of solutions. When the initial energy E(0) < 0, a concave function L2(t) was also constructed. With the same method, it was found that the solutions to the equation had a finite-time blow-up.-
Keywords:
- m-Laplacian /
- strong delay terms /
- blow-up
-
含有m-Laplacian项的拟线性波方程源于非线性Voigt模型, 描述的是粘弹性材料杆的纵向振动, 特别是可描述受外力作用的Ludwick材料的振动[1-2]. 近年来, 学者们对带有p-Laplacian项的偏微分方程解的性态作了深入研究, 如:PEI等[3]研究了p-Laplacian型波方程utt-Δpu-Δut=f(u), 其中2 < p < 3且f(u)的指数为超临界情形, 证明了该方程的整体弱解的存在以及当初始能量为负值时其解存在有限时间爆破; NAKAO[4]在适当假设下, 证明了p-Laplacian项为div{σ(|▽u|2)▽u}的偏微分方程的能量解具有多项式衰减性; RAPOSO等[5]考虑了带有记忆项和p-Laplacian项但不含非线性源项和强阻尼项的波方程, 主要通过Galerkin方法证明该方程的整体解存在且能量函数也具有多项式衰减性. 此外, 时滞项是系统不稳定的一个重要因素, 含有时滞项的方程受到越来越多学者的关注, 如: MESSAOUDI等[6]研究了带有强阻尼时滞项的波方程utt-Δu-μ1Δut-μ2Δut(t- τ)=0, 当假设|μ2|≤μ1时证明方程解的适定性以及能量函数具有指数衰减性; FENG[7]在一定条件下利用能量扰动法得到方程utt−Δu+∫t0g(t−s)Δu(x,s)ds−μ1Δut−μ2Δut(t−τ)=0解的指数衰减性; MOHAMMAD和MUHAMMAD[8]在文献[7]的基础上研究带有非线性源项|u|p-1u的柯西问题, 证明在初始能量为负时, 解存在有限时间爆破. 更多解的爆破研究可参考文献[9-12].
基于文献[3, 6-8]的研究, 本文考虑可描述弹性杆纵波振动的带有强阻尼时滞项的粘弹性方程:
{utt−Δmu−Δu+g∗Δu−μ1Δut(x,t)−μ2Δut(x,t−τ)= |u|p−2u (x∈Ω,t>0),u(x,t)=0 (x∈∂Ω,t⩾0),ut(x,t−τ)=f0(x,t−τ)(x∈Ω,t∈(0,τ)),u(x,0)=u0(x),ut(x,0)=u1(x)(x∈Ω), (1) 其中,u(x, t)表示振动的位移, g*Δu表示粘弹性弱阻尼, -Δut表示弹性体的内部阻尼, Ω是Rn (n≥1)上带有光滑边界∂Ω的有界区域, g(·): R+→R+是正函数, m、μ1、μ2、p为常数,
Δmu=div(|∇u|m−2∇u),(g∗Δu)(t)=∫t0g(t−s)Δu(s)ds. 本文主要利用凹性方法, 证明当初始能量0 < E(0) < E1和E(0) < 0时, 方程组(1)的解都存在有限时间的爆破, 并给出爆破时间T*的上界估计.
1. 预备知识
本文用到Sobolev空间W01, m(Ω) (m≥2)和赋范线性空间Lp(Ω)及其范数‖ · ‖p. 特别地, L2(Ω)的范数表示为‖ · ‖. 正常数K>0为紧嵌入W01, m(Ω)↪Lp(Ω)的最佳嵌入常数. 对方程组(1)中涉及到的函数g(·)和正常数m、p假设如下:
(A1) g: R+→R+是非增可微函数, 满足: 1- ∫+∞0g(s)ds=l0>0, g′(t)≤0, t≥0.
(A2) 当n>m时, m < p≤ mnn−m; 当n≤m时, m < p < +∞.
(A3) 常数p和函数g(·) 满足: ∫+∞0g(s)ds≤p(p−2)(p−1)2.
类似文献[6], 引进新变量
z(x,ρ,t)=ut(x,t−ρτ)((x,ρ,t)∈Ω×(0,1)×(0,+∞)), 则有
τz(x,ρ,t)+zρ(x,ρ,t)=0((x,ρ,t)∈Ω×(0,1)×(0,+∞)). 从而方程组(1)等价于:
{utt−Δmu−Δu+g∗Δu−μ1Δut(x,t)−μ2Δz(x,1,t)=|u|p−2u((x,t)∈Ω×(0,+∞)),τz(x,ρ,t)+zρ(x,ρ,t)=0((x,ρ,t)∈Ω×(0,1)×(0,+∞)),u(x,t)=0((x,t)∈∂Ω×[0,+∞)),z(x,ρ,0)=f0(x,−ρτ)((x,ρ)∈Ω×(0,1)),u(x,0)=u0(x),ut(x,0)=u1(x)(x∈Ω). (2) 定义方程组(2)的修正能量函数为
E(t):=12‖ut‖2+1m‖∇u‖mm+12(1−∫t0g(s)ds)‖∇u‖2+12(g∘∇u)(t)+ξ2∫Ω∫10|∇z(x,ρ,t)|2 dρdx−1p‖u‖pp(t⩾0), (3) 其中
(g∘φ)(t)=∫t0g(t−s)‖φ(t)−φ(s)‖2 ds,τ|μ2|<ξ<τ(2μ1−|μ2|),μ1>|μ2|. 下面给出方程组(1)的弱解定义.
定义 1 任给定初始值(u0, u1)∈W01, m(Ω)×L2(Ω), 称H=(u, ut)∈C(R+, W01, m(Ω)×L2(Ω))为方程组(1)的弱解, 若满足: H(0)=(u0, u1), 且对任意w∈H01(Ω),有
(utt,w)+(|∇u|m−2∇u,∇w)+(∇u,∇w)− ∫t0g(t−s)(∇u(s),∇w)ds+μ1(∇ut,∇w)+ μ2(∇ut(t−τ),∇w)=(|u|p−2u,w). 类似文献[5]、[6]、[10]的证明, 可直接得到方程组(2)的局部解的存在唯一性:
定理 1 假设(A1)、(A2)成立, 若初始值满足(u0, u1, f0)∈W01, m(Ω)×L2(Ω)×H1(Ω×(- τ, 0)), 则方程组(2)存在唯一局部解, 且存在足够小的T>0, 有
u∈C([0,T);W1,m0(Ω)),ut∈C([0,T);H1(Ω))∩L2([0,T)×Ω),z∈C([0,T);H1(Ω×(0,1))). 引理 1 设u是方程组(2)的解, 则存在正常数C1>0, 使得
E′(t)⩽−C1(‖∇ut‖2+‖∇z(x,1,t)‖2)<0. 证明 用ut乘以方程组(2)中的第1个方程, 并在Ω上积分, 得
ddt[12‖ut‖2+1m‖∇u‖mm+12(1−∫t0g(s)ds)‖∇u‖2+12(g∘∇u)(t)−1p‖u‖pp]=12(g′∘∇u)(t)−12g(t)‖∇u‖2−μ1‖∇ut‖2−μ2∫Ω∇z(x,1,t)⋅∇ut(x,t)dx. (4) 用−ξτΔz乘以方程组(2)的第2个方程, 并在Ω×(0, 1)上积分,得
ξ2ddt∫Ω∫10|∇z(x,ρ,t)|2 dρdx+ξ2τ(‖∇z(x,1,t)‖2−‖∇ut‖2)=0. (5) 由Young不等式[13], 可得
−μ2∫Ω∇z(x,1,t)⋅∇ut(x,t)dx⩽|μ2|2‖∇z(x,1,t)‖2+|μ2|2‖∇ut‖2. (6) 由式(4)~(6), 可得
E′(t)⩽12(g′∘∇u)(t)−12g(t)‖∇u‖2+(ξ2τ+|μ2|2−μ1)‖∇ut‖2+(|μ2|2−ξ2τ)‖∇z(x,1,t)‖2. (7) 因此, 令0<C1≤min, 由式(7)和假设(A1)可知结论成立.
2. 解的爆破
下面考虑方程组(2)的初始能量为正值和负值时解的爆破情况. 首先, 引入3个正常数:
K_{1}=\max \{1, K\}, \zeta_{1}=\frac{K_{1}^{p m /(m-p)}}{m}, E_{1}=\left(1-\frac{m}{p}\right) \zeta_{1}. 引理 2 若假设(A1)、(A2)成立, 且满足
E(0)<E_{1}, \zeta_{1}<\frac{1}{m}\left\|\nabla u_{0}\right\|_{m}^{m}+\frac{l}{2}\left\|\nabla u_{0}\right\|^{2} \leqslant \frac{K_{1}^{-m}}{m}, (8) 则存在正常数ζ2>ζ1, 使得
\frac{1}{m}\|\nabla u(t)\|_{m}^{m}+\frac{l}{2}\|\nabla u(t)\|^{2} \geqslant \zeta_{2} \quad(t \geqslant 0), (9) \|u(t)\|_{p}^{p} \geqslant\left(m^{\frac{1}{m}} K_{1}\right)^{p} \zeta_{2}^{p / m} \quad(t \geqslant 0). (10) 证明 由式(3)和假设(A1)、(A2), 可得
\begin{array}{l} E(t) \geqslant \frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}-\frac{1}{p}\|u\|_{p}^{p} \geqslant \\ \quad\quad\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}-\frac{K_{1}^{p}}{p}\|\nabla u\|_{m}^{p} \geqslant \\ \quad\quad\left(\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}\right)- \\ \quad\quad\frac{\left(m^{\frac{1}{m}} K_{1}\right)^{p}}{p}\left(\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}\right)^{\frac{p}{m}}= \\ \quad\quad\zeta(t)-\frac{\left(m^{\frac{1}{m}} K_{1}\right)^{p}}{p} \zeta^{\frac{p}{m}}(t):=f(\zeta(t)). \end{array} (11) 其中ζ(t)=\frac{1}{m}\left\| \nabla u \right\|_{m}^{m}+\frac{l}{2}{{\left\| \nabla u \right\|}^{2}}. 易知f(ζ(t))在ζ1>0处有最大值E1, 且有
f^{\prime}(\zeta)=1-\frac{\left(m^{\frac{1}{m}} K_{1}\right)^{p}}{m} \zeta^{\frac{p-m}{m}}. (12) 当ζ ∈(0, ζ1) 时, f′(ζ)>0, 所以f(ζ)在(0, ζ1)上严格单调递增; 当ζ∈(ζ1, +∞)时, f′(ζ) < 0, 所以f(ζ)在(ζ1, +∞)上严格单调递减. 又由于E(0) < E1=f(ζ1), 则存在正常数ζ2 ∈(ζ1, +∞), 使得f(ζ2)=E(0). 由式(11)可知f(ζ(0))≤E(0)=f(ζ2), 所以ζ(0)≥ζ2.
假设存在t1>0, 有\frac{1}{m}\left\| \nabla u\left( {{t}_{1}} \right) \right\|_{m}^{m}+\frac{l}{2}{{\left\| \nabla u\left( {{t}_{1}} \right) \right\|}^{2}}<{{\zeta }_{2}}. 进一步地, 由式(11)和f(ζ)的单调性可得E(t2)≥ f(ζ(t2))>f(ζ2)=E(0), 在t ∈(0, T)上与E(t) < E(0)矛盾, 故式(9)成立.
再一次利用式(11), 可得
\begin{aligned} &\frac{1}{p}\|u\|_{p}^{p} \geqslant \frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}-E(t) \geqslant\\ &\ \ \ \ \frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}-E(0) \geqslant \zeta_{2}-E(0)=\\ &\ \ \ \ \frac{\left(m^{\frac{1}{m}} K\right)^{p}}{p} \zeta_{2}^{p / m}. \end{aligned} (13) 因此, 式(10)成立.
定理 2 在引理2的假设下, 进一步假设(A3)成立, 则方程组(2)的解存在有限时间爆破.
证明 设函数
L_{1}(t)=G_{1}^{1-\alpha}(t)+\varepsilon \int_{\varOmega} u u_{t} \mathrm{~d} x+\frac{\varepsilon \mu_{1}}{2}\|\nabla u\|^{2} \quad(t \in[0, T)), (14) 其中, ε>0为足够小的正实数, 且
0<\alpha \leqslant \min \left\{\frac{m-2}{p}, \frac{m-2}{2 m}\right\}, (15) G_{1}(t):=E_{2}-E(t), E_{2} \in\left(E(0), E_{1}\right). (16) 下面将证明存在C>0, 使L1(t)满足微分不等式
L_{1}^{\prime}(t) \geqslant C L_{1}^{q}(t) \quad(q>1). 首先, 由式(3)、(16)和引理1, 得
\begin{array}{l} 0<G_{1}(0)<G_{1}(t) \leqslant\\ \ \ \ \ E_{2}-\left(\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}\right)+\frac{1}{p}\|u\|_{p}^{p} \quad(t \geqslant 0). \end{array} 由引理2, 有
E_{2}-\left(\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}\right) \leqslant E_{2}-\zeta_{2} \leqslant E_{1}-\zeta_{1}=-\frac{m}{p} \zeta_{1}. 因此
0<G_{1}(0)<G_{1}(t) \leqslant \frac{1}{p}\|u\|_{p}^{p}. (17) 对L1(t)关于时间t求导, 有
\begin{array}{l} L_{1}^{\prime}(t)=(1-\alpha) G_{1}^{-\alpha}(t) G_{1}^{\prime}(t)+\varepsilon\left\|u_{t}\right\|^{2}+ \\ \ \ \ \ \ \ \ \ \varepsilon \int_{\varOmega} u u_{t t} \mathrm{~d} x+\varepsilon \mu_{1} \int_{\varOmega} \nabla u \cdot \nabla u_{t} \mathrm{~d} x= \\ \ \ \ \ \ \ \ \ (1-\alpha) G_{1}^{-\alpha}(t) G_{1}^{\prime}(t)+\varepsilon\left\|u_{t}\right\|^{2}-\varepsilon\|\nabla u\|_{m}^{m}- \\ \ \ \ \ \ \ \ \ \varepsilon\|\nabla u\|^{2}+\varepsilon \int_{\varOmega} \nabla u(t) \int_{0}^{t} g(t-s) \nabla u(s) \mathrm{d} s \mathrm{~d} x- \\ \ \ \ \ \ \ \ \ \varepsilon \mu_{2} \int_{\varOmega} \nabla u(x, t) \cdot \nabla z(x, 1, t) \mathrm{d} x+\varepsilon\|u\|_{p}^{p}. \end{array} (18) 由Young不等式, 有
\begin{array}{l} \int_{\varOmega} \nabla u(t) \int_{0}^{t} g(t-s) \nabla u(s) \mathrm{d} s \mathrm{~d} x= \\ \ \ \ \ \ \ \ \ \int_{0}^{t} g(t-s) \int_{\varOmega} \nabla u(t) \cdot(\nabla u(s)-\nabla u(t)) \mathrm{d} x \mathrm{~d} s+ \\ \ \ \ \ \ \ \ \ \int_{0}^{t} g(s) \mathrm{d} s\|\nabla u\|^{2} \geqslant-\delta_{1}(g \circ \nabla u)(t)+\\ \ \ \ \ \ \ \ \ \left(1-\frac{1}{4 \delta_{1}}\right) \int_{0}^{t} g(s) \mathrm{d} s\|\nabla u\|^{2}, \end{array} (19) \begin{array}{l} -\mu_{2} \int_{\varOmega} \nabla u(x, t) \cdot \nabla z(x, 1, t) \mathrm{d} x \geqslant\\ \quad-\frac{\left|\mu_{2}\right|}{4 \delta_{2}}\|\nabla u\|^{2}-\left|\mu_{2}\right| \delta_{2}\|\nabla z(x, 1, t)\|^{2}. \end{array} (20) 取0<a<1, δ1=p(1-a)/2, 将式(19)、(20)代入式(18), 可得
\begin{array}{l} L_{1}^{\prime}(t) \geqslant(1-\alpha) G_{1}^{-\alpha}(t) G_{1}^{\prime}(t)+\varepsilon p(1-a) G_{1}(t)+\\ \quad\varepsilon\left(1+\frac{p(1-a)}{2}\right)\left\|u_{t}\right\|^{2}+\varepsilon\left[\frac{p(1-a)}{2}-1+\right.\\ \quad\left.\left(1-\frac{1}{2 p(1-a)}-\frac{p(1-a)}{2}\right) \int_{0}^{t} g(s) \mathrm{d} s\right]\|\nabla u\|^{2}+\\ \quad\varepsilon a\|u\|_{p}^{p}+\frac{\varepsilon p(1-a) \xi}{2} \int_{\varOmega} \int_{0}^{1}|\nabla z(x, \rho, t)|^{2} \mathrm{~d} \rho \mathrm{d} x+\\ \quad\varepsilon\left(\frac{p(1-a)}{m}-1\right)\|\nabla u\|_{m}^{m}-\frac{\varepsilon\left|\mu_{2}\right|}{4 \delta_{2}}\|\nabla u\|^{2}-\\ \quad\varepsilon\left|\mu_{2}\right| \delta_{2}\|\nabla z(x, 1, t)\|^{2}-\varepsilon p(1-a) E_{2}. \end{array} (21) 下面对式(21)中一些项进行估计. 令δ2=MG1-α(t) (M>0), 由引理1可得
\begin{array}{l} -\varepsilon \mid \mu_{2} \mid \delta_{2}\|\nabla z(x, 1, t)\|^{2}=\\ \quad -\varepsilon M\left|\mu_{2}\right| G_{1}^{-\alpha}(t)\|\nabla z(x, 1, t)\|^{2} \geqslant \\ \quad \frac{\varepsilon M\left|\mu_{2}\right|}{C_{1}} E^{\prime}(t) G_{1}^{-\alpha}(t)=-\frac{\varepsilon M\left|\mu_{2}\right|}{C_{1}} G_{1}^{-\alpha}(t) G_{1}^{\prime}(t). \end{array} (22) 利用Hölder不等式[14]和嵌入W01, m(Ω)↪Lp(Ω), 结合式(17), 有
\begin{array}{l} -\frac{\varepsilon\left|\mu_{2}\right|}{4 \delta_{2}}\|\nabla u\|^{2}=-\frac{\varepsilon\left|\mu_{2}\right|}{4 M} G_{1}^{\alpha}(t)\|\nabla u\|^{2} \geqslant \\ \quad -\frac{\varepsilon\left|\mu_{2}\right||\varOmega|^{\frac{m-2}{m}}}{4 M p^{\alpha}}\|u\|_{p}^{p \alpha}\|\nabla u\|_{m}^{2} \geqslant \\ \quad -\frac{\varepsilon\left|\mu_{2}\right||\varOmega|^{\frac{m-2}{m}} K^{p \alpha}}{4 M p^{\alpha}}\|\nabla u\|_{m}^{p \alpha+2} . \end{array} (23) 进一步地, 由{{z}^{\nu }}\le z+1\le \left( 1+\frac{1}{b} \right)\left( z+b \right) (z≥0, 0 < ν≤1, b≥0)和式(23), 可得
-\frac{\varepsilon\left|\mu_{2}\right|}{4 \delta_{2}}\|\nabla u\|^{2} \geqslant-\frac{\varepsilon C_{2}}{M}\left(\|\nabla u\|_{m}^{m}+G_{1}(t)\right), (24) 其中{C_2}: = \frac{{\left| {{\mu _2}} \right|{{\left| \mathit{\Omega } \right|}^{\frac{{m - 2}}{m}}}{K^{p\alpha }}\left( {1 + {G_1}\left( 0 \right)} \right)}}{{4{p^\alpha }{G_1}\left( 0 \right)}}.
由假设(A3)和p>m, 可得
\begin{array}{l} \frac{p(1-a)}{2}-1+\left(1-\frac{1}{2 p(1-a)}-\frac{p(1-a)}{2}\right) \int_{0}^{t} g(s) \mathrm{d} s>0, \\ \frac{p(1-a)}{m}-1 \leqslant p(1-a)-2+\left(2-\frac{1}{p(1-a)}-p(1-a)\right)(1-l). \end{array} 因此, 令a>0充分小, 取适当的E2 ∈(E(0), E1), 并结合引理2可得
\begin{array}{l} \varepsilon\left[\frac{p(1-a)}{2}-1+\left(1-\frac{1}{2 p(1-a)}-\frac{p(1-a)}{2}\right) \int_{0}^{t} g(s) \mathrm{d} s\right] \times \\ \quad \|\nabla u\|^{2}+\varepsilon\left(\frac{p(1-a)}{m}-1\right)\|\nabla u\|_{m}^{m}-\varepsilon p(1-a) E_{2} \geqslant \\ \quad \varepsilon(p(1-a)-m)\left(\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}\right)- \\ \quad \varepsilon p(1-a) E_{2} \geqslant \varepsilon C_{3}\left(\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{l}{2}\|\nabla u\|^{2}\right), \end{array} (25) 其中C3=p(1-a)-m- \frac{{p\left( {1 - a} \right){E_2}}}{{{\zeta _2}}}≥0.
将式(22)~(25)代入式(21), 可得
\begin{aligned} L_{1}^{\prime}(t) & \geqslant\left(1-\alpha-\frac{\varepsilon M\left|\mu_{2}\right|}{C_{1}}\right) G_{1}^{-\alpha}(t) G_{1}^{\prime}(t)+\\ & \varepsilon\left(p(1-a)-\frac{C_{2}}{M}\right) G_{1}(t)+\varepsilon\left(1+\frac{p(1-a)}{2}\right)\left\|u_{t}\right\|^{2}+\\ & \varepsilon\left(\frac{C_{3}}{m}-\frac{C_{2}}{M}\right)\|\nabla u\|_{m}^{m}+\frac{\varepsilon l C_{3}}{2}\|\nabla u\|^{2}+\varepsilon a\|u\|_{p}^{p} . \end{aligned} (26) 在式(26)中, 当a>0充分小、M>0足够大时, 可使p(1-a)-\frac{{{C_2}}}{M} ≥0, 且\frac{{{C_3}}}{m} - \frac{{{C_2}}}{M} ≥0. 进一步地, 令ε>0充分小, 可使1-α- \frac{{\varepsilon M\left| {{\mu _2}} \right|}}{{{C_1}}}≥0. 故存在正常数C4>0, 使得
\begin{array}{l} L_{1}^{\prime}(t) \geqslant C_{4}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|_{m}^{m}+\|\nabla u\|^{2}+\|u\|_{p}^{p}+G_{1}(t)\right) \\ \quad\quad(t \geqslant 0) . \end{array} (27) 另一方面, 由式(14)可得
L_{1}^{1 /(1-\alpha)}(t) \geqslant C_{5}\left(G_{1}(t)+\left(\int_{\varOmega} u u_{t} \mathrm{~d} x\right)^{\frac{1}{1-\alpha}}+\|\nabla u\|^{\frac{2}{1-\alpha}}\right). (28) 利用式(15)、(17), 结合Young不等式、Poincaré不等式[13], 得
\left(\int_{\varOmega} u u_{t} \mathrm{~d} x\right)^{\frac{1}{1-\alpha}} \leqslant C_{6}\left(G_{1}(t)+\|\nabla u\|_{m}^{m}+\left\|u_{t}\right\|^{2}\right) . (29) 再由式(15)、(17), 有
\begin{array}{l}\|\nabla u\|^{\frac{2}{1-\alpha}}=\left(\|\nabla u\|^{m}\right)^{\frac{2}{m(1-\alpha)}} \leqslant\\ \quad\left(1+\frac{1}{G_{1}(0)}\right)\left(G_{1}(t)+\|\nabla u\|_{m}^{m}\right) \leqslant \\ \quad\left(1+\frac{1}{G_{1}(0)}\right)\left(G_{1}(t)+|\varOmega|^{\frac{m-2}{2}}\|\nabla u\|_{m}^{m}\right). \end{array} (30) 可得
L_{1}^{1 /(1-\alpha)}(t) \leqslant C_{6}\left(G_{1}(t)+\|\nabla u\|_{m}^{m}+\left\|u_{t}\right\|^{2}\right) . (31) 最后, 综合式(27)、(31)可知:存在C>0, 使得
L_{1}^{\prime}(t) \geqslant C L_{1}^{1 /(1-\alpha)}(t) \quad(t \geqslant 0). (32) 对式(32)在(0, t)上积分, 有
L_{1}^{1 /(1-\alpha)}(t) \geqslant \frac{1}{L_{1}^{-\alpha /(1-\alpha)}(0)-\frac{C \alpha}{1-\alpha} t}, 所以, 存在T*≤ \frac{{1 - \alpha }}{{C\alpha L_1^{\alpha /\left( {1 - \alpha } \right)}\left( 0 \right)}}, 当t趋于T*时, L1(t)趋于无穷, 即方程组(2)的解爆破.
定理 3 若假设(A1)~(A3)成立, 且初始能量E(0) < 0时, 则方程组(2)的解同样存在有限时间爆破.
证明 设函数
L_{2}(t)=G_{2}^{1-\beta}(t)+\varepsilon \int_{\varOmega} u u_{t} \mathrm{~d} x+\frac{\varepsilon \mu_{1}}{2}\|\nabla u\|^{2} \quad(t \in[0, T)), (33) 其中, ε>0为足够小的正实数, 0 < β≤min\left\{ {\frac{{m - 2}}{p}, \frac{{m - 2}}{{2m}}} \right\}, 且G2(t)=-E(t).
由式(3)、(16)和引理1, 可得0 < G2(0) < G2(t)≤ \frac{1}{p}\left\| u \right\|_p^p (t≥0). 参照定理2的证明方法(只需令E2=0), 定理得证.
-
[1] STAVRAKAKIS N M, STYLIANOU A N. Global attractor for some wave equations with p-Laplacian damping type[J]. Journal of Differential Equations, 2011, 24(1/2): 159-176. http://www.ams.org/mathscinet-getitem?mr=2759356
[2] WEI D, LIU Y. Analytic and finite element solutions of the power-law Euler-Bernoulli beams[J]. Finite Elements in Analysis and Design, 2012, 52: 31-40. doi: 10.1016/j.finel.2011.12.007
[3] PEI P, RAMMAHA M A, TOUNDYKOV D. Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources[J]. Journal of Mathematical Physics, 2015, 56(8): 1315-1331. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7c66dd49065de35c32302704c396891c
[4] NAKAO M. Existence of global decaying solutions to the initial boundary value problem for quasilinear viscoelastic equations of p-Laplacian type with a derivative nonlineari ty[J]. Kyushu Journal of Mathematics, 2016, 70(1): 63-82. doi: 10.2206/kyushujm.70.063
[5] RAPOSO C A, CATTAI A P, RIBEIRO J O. Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory[J]. Open Journal of Mathematical Analysis, 2018, 2(2): 156-171. http://www.researchgate.net/publication/331633519_Global_Solution_and_Asymptotic_Behaviour_for_a_Wave_Equation_type_p-Laplacian_with_Memory
[6] MESSAOUDI S A, FAREH A, DOUDI N. Well posedness and exponential stability in a wave equation with a strong damping and a strong delay[J]. Journal of Mathematical Physics, 2016, 57(11): 103-121. doi: 10.1063/1.4966551
[7] FENG B W. General decay for a viscoelastic wave equation with strong time-dependent delay[J]. Boundary Va-lue Problems, 2017, 7: 1-11. http://www.biomedcentral.com/openurl?doi=10.1186/s13661-017-0789-6
[8] MOHAMMAD K, MUHAMMAD I M. A blow-up result in a Cauchy viscoelastic problem with a delayed strong daming[J]. Dynamics of Continuous, Discrete and Impulsive Systems: Series B, 2018, 25: 357-367.
[9] 黄东兰, 陈明玉, 林晨. 带变指标反应项的p-Laplacian方程解的爆破[J]. 厦门大学学报(自然科学版), 2014, 53(6): 785-787. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201406008.htm HUANG D L, CHEN M Y, LIN C. Blow-up of solutions to p-Laplacian equations with variable exponents in reaction term[J]. Journal of Xiamen University(Natural Science), 2014, 53(6): 785-787. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201406008.htm
[10] MOHMMAD K, SALIM M. Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay[J]. Applicable Analysis, 2018, 99(3): 530-547. doi: 10.1080/00036811.2018.1504029?src=recsys&
[11] MESSAOUDI S A, HOUARI B S. Global non-existence of solutions of a class of wave equations with non-linear damping and source terms[J]. Mathematical Methods in the Applied Sciences, 2004, 27: 1687-1696. doi: 10.1002/mma.522
[12] 徐瑰瑰, 王利波, 林国广. 带时滞项的Boussinesq-Beam方程的拉回吸引子[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016 XU G G, WANG L B, LIN G G. Pullback attractors for the Boussinesq-Beam equation with time delay[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016
[13] 程建玲. 偏微分方程中常用的不等式及其证明[J]. 枣庄学院学报, 2016, 33(5): 43-46. doi: 10.3969/j.issn.1004-7077.2016.05.008 CHENG J L. Inequalities in partial differential equations and their proofs[J]. Journal of Zaozhuang University, 2016, 33(5): 43-46. doi: 10.3969/j.issn.1004-7077.2016.05.008
[14] 高云天, 霍云霄. 积分形式的Minkowski不等式和逆Minkowski不等式的证明[J]. 吉林省教育学院学报, 2016, 32(8): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201608055.htm GAO Y T, HUO Y X. Proof of Minkowski inequality and inverse Minkowski inequality in integral form[J]. Journal of Educational Institute of Jilin Province, 2016, 32(8): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201608055.htm
-
期刊类型引用(1)
1. 欧阳柏平,侯春娟. 一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性. 华南师范大学学报(自然科学版). 2023(03): 103-109 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 451
- HTML全文浏览量: 131
- PDF下载量: 58
- 被引次数: 1