一步法回收锂离子电池三元正极材料及其性能影响

王媛, 杨茹, 缪建麟, 赵瑞瑞

王媛, 杨茹, 缪建麟, 赵瑞瑞. 一步法回收锂离子电池三元正极材料及其性能影响[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006
引用本文: 王媛, 杨茹, 缪建麟, 赵瑞瑞. 一步法回收锂离子电池三元正极材料及其性能影响[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006
WANG Yuan, YANG Ru, MIAO Jianlin, ZHAO Ruirui. One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006
Citation: WANG Yuan, YANG Ru, MIAO Jianlin, ZHAO Ruirui. One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006

一步法回收锂离子电池三元正极材料及其性能影响

基金项目: 

国家质量监督检验总局科技计划项目 2017QK146

详细信息
    通讯作者:

    赵瑞瑞,Email: zhaoruirui@m.scnu.edu.cn

  • 中图分类号: O611

One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance

  • 摘要: 采用直接一步法回收废旧锂离子电池中的三元正极材料LiNi0.5Co0.2Mn0.3O2,将拆解得到的三元废料经分离、热解处理后进行酸浸,对酸浸溶液进行元素测定后补加Ni、Co、Mn源,使其物质的量之比符合n(Ni)∶n(Co)∶n(Mn)=5∶2∶3. 调整后的溶液直接与草酸钠溶液进行共沉淀,得到草酸盐前驱体,最后与锂源混合,烧结得到三元再生正极材料. 结果表明:再生正极材料的首次放电容量最高达162 mAh/g,充放电100次后的容量保持率接近88%. 但如果材料中杂质元素含量过高,则会对材料电化学性能造成负面影响. 该方法避免了传统方法中将金属元素逐一分离回收所造成的资源浪费和能源损耗,且制备得到的材料具有较高附加值,具有良好的商业化应用前景.
    Abstract: A direct one-step recycling process was developed to recycle the trinary materials from the spent lithium ion batteries. The spent materials were collected after battery disassembling, electrode separation and pyrolysis and subjected to acid leaching. The element concentration in the obtained solution from the leaching process was determined with elemental analysis, and proper Ni, Co and Mn sources were added into the solution, achieving a ratio of n(Ni)∶n(Co)∶n(Mn)=5∶2∶3. The adjusted solution was directly used to co-precipitated with sodium oxalate and the obtained oxalate precipitates were mixed with Li sources. The trinary materials were obtained after sintering. The results exhibited that the recycled materials with this method could release a discharge capacity of 162 mAh/g and had a capacity retention ratio of 88% after 100 cycles. However, high-content impurity would affect the material performance, resulting in inferior electrochemical properties. This novel method can avoid the resource waste and energy loss in the traditional recycling process, whereby every metal is separated. The obtained materials through this process have higher additional value, promising an attractive commercial prospect.
  • 图  1   添加不同元素前驱体的XRD图

    Figure  1.   The XRD patterns of different precursors

    图  2   烧结材料的XRD图谱及(003)面的放大部分

    Figure  2.   The XRD patterns of the final products and the enlarged part of (003) diffraction peak

    图  3   前驱体及烧结材料的SEM图

    Figure  3.   The SEM images for precursor and the final materials

    图  4   回收材料的电化学性能

    Figure  4.   The electrochemical properties of the recycled materials

    图  5   一步法共沉淀反应的机理示意图

    Figure  5.   The reaction mechanism of the direct co-precipitation process

    表  1   几种样品的ICP结果

    Table  1   The ICP results of the obtained samples

    样品 物质的量/mol
    Li Ni Mn Co Mg Al
    NCM1 1.000 0 0.491 0 0.308 4 0.195 6 0.001 8 0.000 3
    NCM2 1.000 0 0.493 0 0.307 4 0.195 6 0.001 6 0.001 7
    NCM3 1.000 0 0.494 6 0.307 6 0.195 6 0.001 6 0.003 1
    NCM4 1.000 0 0.492 3 0.308 1 0.195 8 0.005 8 0.000 3
    NCM5 1.000 0 0.487 0 0.307 6 0.196 5 0.011 1 0.000 4
    注:以Li+浓度1 mol/L为基准,对其他元素进行核算.
    下载: 导出CSV
  • [1] 王刚, 赵光金, 吴文龙, 等. 动力锂电池梯次利用与回收处理[M]. 北京: 中国电力出版社, 2015.
    [2] 余海军, 谢英豪, 张铜柱. 车用动力电池回收技术进展[J]. 中国有色金属学报, 2014, 24(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201402021.htm

    YU H J, XIE Y H, ZHANG T Z. Technical progress on power batteries recovery for electric vehicle[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201402021.htm

    [3] 辛宝平, 朱庆荣, 李丽. 生物淋滤溶出废旧锂离子电池中钴的研究[J]. 北京理工大学学报, 2007, 27(6): 551-555. doi: 10.3969/j.issn.1001-0645.2007.06.018

    XIN B P, ZHU Q R, LI L, et al. Study on the release of Co from retrieved Li-ion batteries by bioleaching[J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 551-555. doi: 10.3969/j.issn.1001-0645.2007.06.018

    [4]

    ZOU H Y, GRATZ E, APELIAN D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15: 1183-1191. doi: 10.1039/c3gc40182k

    [5]

    KIM D S, SOHN J S, LEE C K. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries[J]. Hydrometallurgy, 2003, 68: 5-10. doi: 10.1016/S0304-386X(02)00167-6

    [6]

    NAN J, HAN D, ZUO X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284. doi: 10.1016/j.jpowsour.2005.03.134

    [7] 缪建麟, 常毅, 蔡俊超, 等. 直接回收锰酸锂制备超级电容器MnS材料的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 45-49. doi: 10.6054/j.jscnun.2019023

    MIAO J L, CHANG Y, CAI J C, et al. Recycling of LiMn2O4 scraps from lithium ion battery and its reuse in supercapacitor field[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 45-49. doi: 10.6054/j.jscnun.2019023

    [8]

    YANG H P, WU H H, GE M Y, et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced Functional Material, 2019, 29(13): 1808825/1-13. doi: 10.1002/adfm.201808825

    [9] 朱显峰, 赵瑞瑞, 常毅, 等. 废旧锂离子电池三元正极材料酸浸研究[J]. 电池, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm

    ZHU X F, ZHAO R R, CHANG Y, et al. Study on the acid leaching of ternary anode materials in spent Li-ion battery[J]. Battery Bimonthly, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm

    [10]

    ZHAO R R, MIAO J L, LAN W J, et al. Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: a case study of LiNi0.5Co0.2Mn0.3O2[J]. Sustainable Materials and Technologies, 2018, 17: e00083/1-9. http://www.researchgate.net/publication/328854119_Synthesis_of_layered_materials_by_ultrasonicmicrowave-assisted_coprecipitation_method_A_case_study_of_LiNi05Co02Mn03O2

    [11] 赵瑞瑞, 梁家星, 杨子莲, 等. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104

    ZHAO R R, LIANG J X, YANG Z L, et al. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104

    [12]

    REN L, WANG P P, HAN Y S, et al. Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles[J]. Chemical Physics Letters, 2009, 476: 78-83. doi: 10.1016/j.cplett.2009.06.015

    [13]

    KIM J H, PARK K J, KIM S J, et al. A method of increasing the energy density of layered Ni-rich Li[Ni1-2xCoxMnx]O2 cathodes (x=0.05, 0.1, 0.2)[J]. Journal of Material Chemistry A, 2019, 7: 2694-2701. http://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta10438g

    [14]

    LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31: 7574-7584. doi: 10.1021/acs.chemmater.9b02372

    [15]

    GUILMARD M, ROUGIER A, GRUNE M, et al. Effects of aluminum on the structural and electrochemical properties of LiNiO2[J]. Journal of Power Sources, 2003, 115: 305-314. doi: 10.1016/S0378-7753(03)00012-0

    [16]

    WENG Y Q, XU S M, JIANG C Y. Synthesis and performances of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries[J]. Journal of Hazardous Materials, 2013, 246: 163-172. http://europepmc.org/abstract/med/23298741

    [17]

    LI J, CAMERON A, LI H Y, et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells[J]. Journal of The Electrochemical Society, 2017, 164(7): A1534-A1544. doi: 10.1149/2.0991707jes

    [18]

    MCCALLA E, ROWE A, SHUNMUGASUNDARAM R, et al. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J]. Chemistry of Materials, 2013, 25: 989-999. doi: 10.1021/cm4001619

  • 期刊类型引用(2)

    1. 郭贺媛熙,李利军,冯军,林鑫,李睿. 基于DNA杂交指示剂和银纳米棒阵列芯片构建氯霉素SERS适配体传感器的研究. 光谱学与光谱分析. 2023(11): 3445-3451 . 百度学术
    2. 赵倩雯,李南希,陈琳琳,李红. 亚甲基蓝介导抗坏血酸氧化动力学的研究. 华南师范大学学报(自然科学版). 2018(06): 25-30 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  161
  • PDF下载量:  81
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-03-25
  • 网络出版日期:  2021-03-23
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回