留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能

陈可欣 李立峰 王熙 李来胜

陈可欣, 李立峰, 王熙, 李来胜. Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 45-51. doi: 10.6054/j.jscnun.2020093
引用本文: 陈可欣, 李立峰, 王熙, 李来胜. Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 45-51. doi: 10.6054/j.jscnun.2020093
CHEN Kexin, LI Lifeng, WANG Xi, LI Laisheng. The Preparation of Z-Scheme Cu2O-(rGO-TiO2) Photocatalyst and Its Performance in Methyl Orange Degradation[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 45-51. doi: 10.6054/j.jscnun.2020093
Citation: CHEN Kexin, LI Lifeng, WANG Xi, LI Laisheng. The Preparation of Z-Scheme Cu2O-(rGO-TiO2) Photocatalyst and Its Performance in Methyl Orange Degradation[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 45-51. doi: 10.6054/j.jscnun.2020093

Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能

doi: 10.6054/j.jscnun.2020093
基金项目: 

国家自然科学基金项目 51978288

广东省自然科学基金项目 2019A151512202

详细信息
    通讯作者:

    王熙,副教授,Email:wangxi@m.scnu.edu.cn

  • 中图分类号: O643.36

The Preparation of Z-Scheme Cu2O-(rGO-TiO2) Photocatalyst and Its Performance in Methyl Orange Degradation

  • 摘要: 通过简易的三步合成法成功制备出在日光下对甲基橙(MO)具有良好光催化性能的Z型Cu2O-(rGO-TiO2)光催化剂.与传统二元异质结不同,还原氧化石墨烯(rGO)作为中间介质可促进光催化剂量子效率的提升,可提高Cu2O-TiO2的氧化还原能力.当rGO负载量(质量分数)为1%时,Cu2O-(rGO-TiO2)具有最佳的光催化活性.采用扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见漫反射(UV-Vis DRS)研究光催化剂的形貌结构和光学性质,采用探针法和光致发光光谱(PL)分析并验证了Z型光催化体系. Cu2O-(rGO-TiO2)光催化剂厚度约32.24 μm,Cu2O呈多面柱状结构,以{111}晶面(具有良好的光催化活性)为主,TiO2纳米颗粒均匀分散在二维单层褶皱片状结构的rGO表面,Cu2O、TiO2和rGO组成了Z型光催化体系.分别探究不同光源和rGO负载量对光催化性能的影响.结果表明:在模拟太阳光照射条件下,中间介质rGO的存在提升了量子效率,增强了光催化剂性能,Cu2O-(1%rGO-TiO2)光照2 h对甲基橙的催化降解率为58%.该Z型光催化剂可被应用于染料废水的降解,研究结果为环境治理提供了新的技术发展思路.
  • 图  1  不同材料的表面形貌SEM图

    Figure  1.  The SEM surface morphology images of different materials

    图  2  rGO、GO、Cu2O-(rGO-TiO2)、rGO-TiO2和Cu2O的XRD图谱

    Figure  2.  The XRD patterns of rGO, GO, Cu2O-(rGO-TiO2), rGO-TiO2 and Cu2O

    图  3  TiO2、Cu2O、Cu2O-TiO2、Cu2O-(rGO-TiO2)和石墨片基底的紫外-可见漫反射光谱

    Figure  3.  The UV-Vis DRS spectrum of TiO2, Cu2O, Cu2O- TiO2, Cu2O-(rGO-TiO2) composite film and graphite

    图  4  TiO2、Cu2O、Cu2O-TiO2和Cu2O-(rGO-TiO2)的光致发光光谱

    Figure  4.  The PL spectrum of TiO2, Cu2O, Cu2O-TiO2 and Cu2O-(rGO-TiO2) composite film

    图  5  不同rGO负载量的甲基橙降解率

    Figure  5.  The methyl orange degradation with different loading ratios of rGO

    图  6  不同材料在不同光源条件下催化降解甲基橙效果

    Figure  6.  The methyl orange degradation with different samples under different light sources

    图  7  异质结和Z型光催化体系的光生电子-空穴对的转移路径、2-羟基对苯二甲酸的荧光强度随时间的变化

    Figure  7.  The path of photoelectron-hole pair transfer in heterojunction and Z-scheme system and the change of fluorescence spectrum peak of 2-hydroxyterephthalic with reaction time

    表  1  不同rGO负载量的实验组

    Table  1.   The experimental systems with different rGO contents

    样品 ρMO/(mg·L-1) t/min 光源
    Cu2O-(0%rGO-TiO2) 2 120 模拟太阳光
    Cu2O-(1.0%rGO-TiO2) 2 120 模拟太阳光
    Cu2O-(1.5%rGO-TiO2) 2 120 模拟太阳光
    Cu2O-(2.0%rGO-TiO2) 2 120 模拟太阳光
    Cu2O-(2.5%rGO-TiO2) 2 120 模拟太阳光
    Cu2O-(3.0%rGO-TiO2) 2 120 模拟太阳光
    下载: 导出CSV

    表  2  不同条件的实验体系

    Table  2.   The experimental systems with different conditions

    样品 ρMO/(mg·L-1) t/min 光源
    Cu2O 2 120 可见光
    TiO2 2 120 紫外光
    Cu2O-(1.0%rGO-TiO2) 2 120 模拟太阳光
    Cu2O-(1.0%rGO-TiO2) 2 120 紫外光
    Cu2O-(1.0%rGO-TiO2) 2 120 可见光
    下载: 导出CSV
  • [1] 洪俊明, 洪华生, 熊小京, 等. A/O膜生物反应器组合工艺处理活性染料废水的实验研究[J].厦门大学学报(自然科学版), 2005, 44(3):441-444.

    HONG J M, HONG H S, XIONG X J, et al. Experimental study on reactive dye wastewater treatment by a combined anaerobic aerobic membrane bioreactor processes[J]. Journal of Xiamen University (Natural Science), 2005, 44(3):441-444.
    [2] 李庄, 曾光明, 高兴斋.偶氮染料废水处理研究现状及其发展方向[J].精细化工中间体, 2000(6):12-15.

    LI Z, ZENG G M, GAO X Z. Summary on the treatment of wastewater from azo dye[J]. Find Chemical Intermediates, 2000(6):12-15.
    [3] BROWN D, LABOUREUR P. The degradation of dyestuffs:Part Ⅰ Primary biodegradation under anaerobic conditions[J]. Chemosphere, 1983, 12(3):397-404.
    [4] 王静, 马红竹.高锰酸钾改性无机-有机膨润土的制备及其对甲基橙废水的氧化降解[C]//中国化学会学术年会论文集.成都: 中国化学会, 2012.

    WANG J, MA H Z. Preparation of a potassium permanganate-modified inorganic-organic bentonite and Its application in methyl orange water treatment[C]//Proceedings of the 28th Chinese Chemical Society Congress. Chengdu: Chinese Chemical Society, 2012.
    [5] TOSINE H M, LAWRENCE J, CAREY J H. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination & Toxicology, 1976, 16(6):697-701.
    [6] ZENG Q X, XU G C, ZHANG L, et al. Porous Cu2O microcubes derived from a metal-formate framework as photocatalyst for degradation of methyl orange[J]. Materials Research Bulletin, 2019, 119:110537/1-4. http://www.sciencedirect.com/science/article/pii/S0025540818334287
    [7] LU L, SHAN R, SHI Y, et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange[J]. Chemosphere, 2019, 222:391-398.
    [8] THOMPSON T L, YATES J J. Surface science studies of the photoactivation of TiO2-new photochemical processes[J]. 2006, 38(1): 4428-4453.
    [9] 方方, 张旭. Cu2O/TiO2异质结构纳米材料的合成及其光催化降解甲基橙的研究[J].哈尔滨师范大学自然科学学报, 2019, 35(4):75-78. http://www.cnki.com.cn/Article/CJFDTotal-HEBY201904013.htm

    FANG F, ZHANG X. The research on the synthesis of Cu2O/TiO2 heterostructure nanomaterials and their photocatalytic degradation of methyl orange[J]. Natural Science Journal of Harbin Normal University, 2019, 35(4):75-78. http://www.cnki.com.cn/Article/CJFDTotal-HEBY201904013.htm
    [10] HILL R, BENDALL F. Function of the two cytochrome components in chloroplasts:a working hypothesis[J]. Nature, 1960, 186:136-137. http://pcp.oxfordjournals.org/external-ref?access_num=10.1038/186136a0&link_type=DOI
    [11] AGUIRRE M E, ZHOU R X, EUGENE A J, et al. Cu2O/ TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion[J]. Applied Catalysis B:Environmental, 2017, 217:485-493.
    [12] MENG A Y, ZHU B C, ZHONG B, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Surface Science, 2017, 422:518-527.
    [13] HU Z, WANG X, DONG H T, et al. Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N2, atmosphere:influencing factors, kinetics and mechanism[J]. Journal of Hazardous Materials, 2017, 340:1-15.
    [14] LIU L, LIN S L, HU J S, et al. Plasmon-enhanced photocatalytic properties of nano Ag@ AgBr on single-crystalline octahedral Cu2O(111) microcrystals composite photocatalyst[J]. Applied Surface Science, 2015, 330:94-103.
    [15] KASHINATH L, NAMRATHA K, BYRAPPA K. Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-rGO nanocomposite for efficient photodegradation of dyes[J]. Journal of Alloys and Compounds, 2017, 695:799-809.
    [16] XU L, JIANG L P, ZHU J J. Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures[J]. Nanotechnology, 2008, 20(4):045605/1-5.
    [17] LIU M, PIAO L, LU W, et al. Flower-like TiO2 nanostructures with exposed {001} facets:facile synthesis and enhanced photocatalysis[J]. Nanoscale, 2010, 2(7):1115-1117.
    [18] XI Z, LI C, ZHANG L, et al. Synergistic effect of Cu2O/TiO2 heterostructure nanoparticle and its high H2 evolution activity[J]. International Journal of Hydrogen Energy, 2014, 39(12):6345-6353.
    [19] LI X Z, LI F B, YANG C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001, 141(2/3):209-217.
    [20] CHEN F, YANG Q, ZHONG Y, et al. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (rGO) jointly modified BiVO4 under visible light irradiation[J]. Water Research, 2016, 101:555-563.
    [21] INIESTA J, MICHAUD P A, PANIZZA M, et al. Electrochemical oxidation of phenol at boron-doped diamond electrode[J]. Electrochimica Acta, 2001, 46(23):3573-3578.
    [22] 李慧泉, 陈伟凡, 马继龙, 等.掺杂Yb的TiO2光催化剂的制备和性能[J].影像科学与光化学, 2005, 23(6):453-459.

    LI H Q, CHEN W F, MA J L, et al. Preparation and properties of Yb doped TiO2 photocatalysts[J]. Photographic Science and Photochemistry, 2005, 23(6):453-459.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  113
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-26
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回