Superconducting Nonadiabatic Geometric Quantum Computation with Optimal Control
-
摘要: 为实现量子门的高保真度和强鲁棒性,提出基于超导量子电路体系的非绝热几何量子计算方案.仅通过对超导比特施加含时共振微波驱动的方式,可以在超导比特上实现任意的单比特几何量子门.同时,在2个电容耦合的超导比特体系中,非平庸的2比特几何量子门也可以类似地实现.结果表明:提出的非绝热几何量子计算方案不仅对几何量子操作具有较好的鲁棒性,还可以与优化控制技术兼容,进一步增强量子门的鲁棒性.该方案的提出使容错固态量子计算的研究与发展向前迈出了重要的一步.Abstract: In order to realize quantum gates with high fidelity and strong robustness, a scheme of nonadiabatic geometric quantum computation based on superconducting quantum circuits is proposed. Arbitrary single-qubit geometric quantum gates can be realized by applying a time-dependent resonant microwave field to a superconducting qubit. Meanwhile, nontrivial two-qubit geometric quantum gates can be realized similarly on two capacitively coupled qubits. The results show that the proposed scheme not only have good robustness of geometric operations but also are compatible with optimal control technology to further enhance the gate robustness. The study makes an important step towards fault-tolerant solid-state quantum computation.
-
-
-
[1] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A, 1984, 392:45-47.
[2] WILCZEK F, ZEE A. Appearance of gauge structure in simple dynamical systems[J]. Physical Review Letters, 1984, 52(24):2111-2114.
[3] AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum evolution[J]. Physical Review Letters, 1987, 58(16):1593-1596.
[4] ZHU S L, ZANARDI P. Geometric quantum gates that are robust against stochastic control errors[J]. Physical Review A, 2005, 72(2):020301/1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000072000002020301000001&idtype=cvips&gifs=Yes
[5] JOHANSSON M, ANDERSSON L M, ERICSSON M, et al. Robustness of nonadiabatic holonomic gates[J]. Physical Review A, 2012, 86(6):062322/1-10.
[6] WANG X B, KEIJI M. Nonadiabatic conditional geometric phase shift with NMR[J]. Physical Review Letters, 2001, 87(9):097901/1-4. http://europepmc.org/abstract/med/11531598
[7] ZHU S L, WANG Z D. Implementation of universal quantum gates based on nonadiabatic geometric phases[J]. Physical Review Letters, 2002, 89(9):097902/1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000008000071000001&idtype=cvips&gifs=Yes
[8] ZHAO P Z, CUI X D, XU G F, et al. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation[J]. Physical Review A, 2017, 96(5):052316/1-6. doi: 10.1103/PhysRevA.96.052316
[9] CHEN T, XUE Z Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling[J]. Physical Review Applied, 2018, 10(5):054051/1-13.
[10] SJÖVIST E, TONG D M, ANDERSSON L M, et al. Non-adiabatic holonomic quantum computation[J]. New Journal of Physics, 2012, 14(10):103035/1-10.
[11] XU G F, ZHANG J, TONG D M, et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces[J]. Physical Review Letters, 2012, 109(17):170501/1-5. http://www.ncbi.nlm.nih.gov/pubmed/23215167
[12] ZHENG S B, YANG C P, NORI F. Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts[J]. Physical Review A, 2016, 93(3):032313/1-5.
[13] JING J, LAM C H, WU L A. Non-Abelian holonomic transformation in the presence of classical noise[J]. Phy-sical Review A, 2017, 95(1):012334/1-7.
[14] LIU B J, SONG X K, XUE Z Y, et al. Plug-and-play approach to nonadiabatic geometric quantum gates[J]. Phy-sical Review Letters, 2019, 123(10):100501/1-6. http://www.ncbi.nlm.nih.gov/pubmed/31573289
[15] LI S, CHEN T, XUE Z Y. Fast holonomic quantum computation on superconducting circuits with optimal control[J]. Advanced Quantum Technologies, 2020, 3(3):2000001/1-7.
[16] YAN T, LIU B J, XU K, et al. Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates[J]. Physical Review Letters, 2019, 122(8):080501/1-6.
[17] DAEMS D, RUSCHHAUPT A, SUGNY D, et al. Robust quantum control by a single-shot shaped pulse[J]. Phy-sical Review Letters, 2013, 111(5):050404/1-5. http://europepmc.org/abstract/med/23952372
[18] DEVORET M H, SCHOELKOPF R J. Superconducting circuits for quantum information:an outlook[J]. Science, 2013, 339:1169-1174.
[19] KOCH J, YU T M, MAJER J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J]. Physical Review A, 2007, 76(4):042319/1-19. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000007000010000140000001&idtype=cvips&gifs=Yes
[20] WANG T H, ZHANG Z X, XIANG L, et al. The experimental realization of high-fidelity ' shortcut-to-adiabati- city' quantum gates in a superconducting Xmon qubit[J]. New Journal of Physics, 2018, 20(6):065003/1-10.